TY - JOUR
T1 - Prostate cancer and aspirin use
T2 - Synopsis of the proposed molecular mechanisms
AU - Bilani, Nadeem
AU - Bahmad, Hisham
AU - Abou-Kheir, Wassim
N1 - Publisher Copyright:
© 2017 Bilani, Bahmad and Abou-Kheir.
PY - 2017/3/21
Y1 - 2017/3/21
N2 - Background: Prostate cancer (PCa) is a critical health burden, impacting the morbidity and mortality of millions of men around the world. Most of the patients with PCa have their disease at first sensitive to androgen deprivation treatments, but later they develop resistance to therapy and eventually die of metastatic castration-resistant prostate cancer (CRPC). Although the newly developed anti-androgen therapies are effectively alleviating symptoms and prolonging lives of patients, there are still no curable treatments for CRPC. Recently, statistical studies have shown that the chronic use of aspirin might be significantly associated with better outcomes in PCa patients. Through this review, we aim to identify the different proposed molecular mechanisms relating aspirin to the pathobiology of PCa neoplasms, with a major focus on basic research done in this context. Methods: Articles were retrieved via online database searching of PubMed and MEDLINE between 1946 and September 2016. Keywords and combinations related to PCa and aspirin were used to perform the search. Abstracts of the articles were studied by two independent reviewers and then data extraction was performed on the relevant articles that met our review objectives. Results: Aspirin, a non-steroidal anti-inflammatory drug (NSAID), affects the proliferation, apoptosis, resistance and metastasis of PCa cell lines, through both COX-dependent and COX-independent mechanisms. It also lowers levels of the PCa diagnostic marker prostate specific antigen (PSA), suggesting that clinicians need to at least be aware if their patients are using Aspirin chronically. Conclusion: This review strongly warrants further consideration of the signaling cascades activated by aspirin, which may lead to new knowledge that might be applied to improve diagnosis, prognosis and treatment of PCa.
AB - Background: Prostate cancer (PCa) is a critical health burden, impacting the morbidity and mortality of millions of men around the world. Most of the patients with PCa have their disease at first sensitive to androgen deprivation treatments, but later they develop resistance to therapy and eventually die of metastatic castration-resistant prostate cancer (CRPC). Although the newly developed anti-androgen therapies are effectively alleviating symptoms and prolonging lives of patients, there are still no curable treatments for CRPC. Recently, statistical studies have shown that the chronic use of aspirin might be significantly associated with better outcomes in PCa patients. Through this review, we aim to identify the different proposed molecular mechanisms relating aspirin to the pathobiology of PCa neoplasms, with a major focus on basic research done in this context. Methods: Articles were retrieved via online database searching of PubMed and MEDLINE between 1946 and September 2016. Keywords and combinations related to PCa and aspirin were used to perform the search. Abstracts of the articles were studied by two independent reviewers and then data extraction was performed on the relevant articles that met our review objectives. Results: Aspirin, a non-steroidal anti-inflammatory drug (NSAID), affects the proliferation, apoptosis, resistance and metastasis of PCa cell lines, through both COX-dependent and COX-independent mechanisms. It also lowers levels of the PCa diagnostic marker prostate specific antigen (PSA), suggesting that clinicians need to at least be aware if their patients are using Aspirin chronically. Conclusion: This review strongly warrants further consideration of the signaling cascades activated by aspirin, which may lead to new knowledge that might be applied to improve diagnosis, prognosis and treatment of PCa.
KW - Aspirin
KW - COX pathway
KW - Chemoprevention
KW - NSAIDs
KW - Prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=85016140734&partnerID=8YFLogxK
U2 - 10.3389/fphar.2017.00145
DO - 10.3389/fphar.2017.00145
M3 - Short survey
AN - SCOPUS:85016140734
SN - 1663-9812
VL - 8
JO - Frontiers in Pharmacology
JF - Frontiers in Pharmacology
IS - MAR
M1 - 145
ER -