Progression of human bronchioloalveolar carcinoma to invasive adenocarcinoma is modeled in a transgenic mouse model of K-ras-induced lung cancer by loss of the TGF-β type II receptor

Alain C. Borczuk, Marieta Sole, Ping Lu, Jinli Chen, May Lin Wilgus, Richard A. Friedman, Steven M. Albelda, Charles A. Powell

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Clinical investigations have suggested that repression of the TGF-β type II receptor (TβRII) may be an important step in progression of lung adenocarcinoma from an indolent in situ state to a frank invasive carcinoma. To test this hypothesis, we compared the effects of deleting the murine homolog of this receptor (Tgfbr2) in a mouse model of mutant K-ras-induced lung carcinoma, which normally induces the formation of multifocal tumors of low invasive potential. In this model, loss of Tgfbr2 induced a highly invasive phenotype associated with lymph node metastasis and reduced survival. Tumor-associated stromal cells displayed an immunosuppressive profile marked by increased numbers of B and T cells. Moreover, tumor stromal cell profiling revealed a developmental TGF-β response profile that associated with a collagenized extracellular matrix and increased invasion of TGF-β nonresponsive tumor cells. Together, these results suggest that our KrasTgfbr2 -/-mouse model of invasive lung carcinoma mirrors the genomic response and clinical progression of human lung adenocarcinoma, recapitulating changes in lung stromal pathways that occur in the tumor microenvironment during malignant progression in this disease.

Original languageEnglish
Pages (from-to)6665-6675
Number of pages11
JournalCancer Research
Volume71
Issue number21
DOIs
StatePublished - 1 Nov 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Progression of human bronchioloalveolar carcinoma to invasive adenocarcinoma is modeled in a transgenic mouse model of K-ras-induced lung cancer by loss of the TGF-β type II receptor'. Together they form a unique fingerprint.

Cite this