TY - JOUR
T1 - Prognosis Individualized
T2 - Survival predictions for WHO grade II and III gliomas with a machine learning-based web application
AU - Karabacak, Mert
AU - Jagtiani, Pemla
AU - Carrasquilla, Alejandro
AU - Germano, Isabelle M.
AU - Margetis, Konstantinos
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - WHO grade II and III gliomas demonstrate diverse biological behaviors resulting in variable survival outcomes. In the context of glioma prognosis, machine learning (ML) approaches could facilitate the navigation through the maze of factors influencing survival, aiding clinicians in generating more precise and personalized survival predictions. Here we report the utilization of ML models in predicting survival at 12, 24, 36, and 60 months following grade II and III glioma diagnosis. From the National Cancer Database, we analyze 10,001 WHO grade II and 11,456 grade III cranial gliomas. Using the area under the receiver operating characteristic (AUROC) values, we deploy the top-performing models in a web application for individualized predictions. SHapley Additive exPlanations (SHAP) enhance the interpretability of the models. Top-performing predictive models are the ones built with LightGBM and Random Forest algorithms. For grade II gliomas, the models yield AUROC values ranging from 0.813 to 0.896 for predicting mortality across different timeframes, and for grade III gliomas, the models yield AUROCs ranging from 0.855 to 0.878. ML models provide individualized survival forecasts for grade II and III glioma patients across multiple clinically relevant time points. The user-friendly web application represents a pioneering digital tool to potentially integrate predictive analytics into neuro-oncology clinical practice, to empower prognostication and personalize clinical decision-making.
AB - WHO grade II and III gliomas demonstrate diverse biological behaviors resulting in variable survival outcomes. In the context of glioma prognosis, machine learning (ML) approaches could facilitate the navigation through the maze of factors influencing survival, aiding clinicians in generating more precise and personalized survival predictions. Here we report the utilization of ML models in predicting survival at 12, 24, 36, and 60 months following grade II and III glioma diagnosis. From the National Cancer Database, we analyze 10,001 WHO grade II and 11,456 grade III cranial gliomas. Using the area under the receiver operating characteristic (AUROC) values, we deploy the top-performing models in a web application for individualized predictions. SHapley Additive exPlanations (SHAP) enhance the interpretability of the models. Top-performing predictive models are the ones built with LightGBM and Random Forest algorithms. For grade II gliomas, the models yield AUROC values ranging from 0.813 to 0.896 for predicting mortality across different timeframes, and for grade III gliomas, the models yield AUROCs ranging from 0.855 to 0.878. ML models provide individualized survival forecasts for grade II and III glioma patients across multiple clinically relevant time points. The user-friendly web application represents a pioneering digital tool to potentially integrate predictive analytics into neuro-oncology clinical practice, to empower prognostication and personalize clinical decision-making.
UR - http://www.scopus.com/inward/record.url?scp=85175047287&partnerID=8YFLogxK
U2 - 10.1038/s41746-023-00948-y
DO - 10.1038/s41746-023-00948-y
M3 - Article
AN - SCOPUS:85175047287
SN - 2398-6352
VL - 6
JO - npj Digital Medicine
JF - npj Digital Medicine
IS - 1
M1 - 200
ER -