Primacy coding in dual olfactory networks

Daniel R. Kepple, Hamza Giaffar, Dima Rinberg, Alexei A. Koulakov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In the olfactory system, odor percepts retain their identity despite substantial variations in concentration, timing, and background. We propose a novel strategy for encoding intensity-invariant stimuli identity based on representing relative rather than absolute stimulus features. In this scheme, dependence on relative amplitudes of stimulus features makes identity invariant to intensity and monotonous non-linearities of neuronal responses. We propose that the olfactory system represents stimulus identity using the information that a subset of odorant receptor types responds more strongly than all receptor types in the complement set. We show that this information is sufficient to ensure the robust recovery of a sparse stimulus (odorant) via elastic net loss minimization. This minimization is performed under the constraints imposed by the relationships between these two receptor sets. We formulate this problem using its dual Lagrangian. We show that the dual problem can be solved by a neural network whose Lyapunov function represents the dual Lagrangian. We thus propose that networks in the piriform cortex compute odorant identity and implement dual computations with the sparse activities of individual neurons representing Lagrange multipliers.

Original languageEnglish
Title of host publicationConference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
EditorsMichael B. Matthews
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages587-592
Number of pages6
ISBN (Electronic)9781538618233
DOIs
StatePublished - 2 Jul 2017
Externally publishedYes
Event51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 - Pacific Grove, United States
Duration: 29 Oct 20171 Nov 2017

Publication series

NameConference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
Volume2017-October

Conference

Conference51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
Country/TerritoryUnited States
CityPacific Grove
Period29/10/171/11/17

Fingerprint

Dive into the research topics of 'Primacy coding in dual olfactory networks'. Together they form a unique fingerprint.

Cite this