TY - JOUR
T1 - Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases
AU - Greco, Carlo
AU - Zelefsky, Michael J.
AU - Lovelock, Michael
AU - Fuks, Zvi
AU - Hunt, Margie
AU - Rosenzweig, Kenneth
AU - Zatcky, Joan
AU - Kim, Balem
AU - Yamada, Yoshiya
PY - 2011/3/15
Y1 - 2011/3/15
N2 - Purpose: To report tumor local control after treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) to extracranial metastatic sites. Methods and Materials: A total of 126 metastases in 103 patients were treated with SD-IGRT to prescription doses of 18-24 Gy (median, 24 Gy) between 2004 and 2007. Results: The overall actuarial local relapse-free survival (LRFS) rate was 64% at a median follow-up of 18 months (range, 2-45 months). The median time to failure was 9.6 months (range, 1-23 months). On univariate analysis, LRFS was significantly correlated with prescription dose (p = 0.029). Stratification by dose into high (23 to 24 Gy), intermediate (21 to 22 Gy), and low (18 to 20 Gy) dose levels revealed highly significant differences in LRFS between high (82%) and low doses (25%) (p < 0.0001). Overall, histology had no significant effect on LRFS (p = 0.16). Renal cell histology displayed a profound dose-response effect, with 80% LRFS at the high dose level (23 to 24 Gy) vs. 37% with low doses (≤22 Gy) (p = 0.04). However, for patients who received the high dose level, histology was not a statistically significant predictor of LRFS (p = 0.90). Target organ (bone vs. lymph node vs. soft tissues) (p = 0.5) and planning target volume size (p = 0.55) were not found to be associated with long-term LRFS probability. Multivariate Cox regression analysis confirmed prescription dose to be a significant predictor of LRFS (p = 0.003). Conclusion: High-dose SD-IGRT is a noninvasive procedure resulting in high probability of local tumor control. Single-dose IGRT may be effectively used to locally control metastatic deposits regardless of histology and target organ, provided sufficiently high doses (> 22 Gy) of radiation are delivered.
AB - Purpose: To report tumor local control after treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) to extracranial metastatic sites. Methods and Materials: A total of 126 metastases in 103 patients were treated with SD-IGRT to prescription doses of 18-24 Gy (median, 24 Gy) between 2004 and 2007. Results: The overall actuarial local relapse-free survival (LRFS) rate was 64% at a median follow-up of 18 months (range, 2-45 months). The median time to failure was 9.6 months (range, 1-23 months). On univariate analysis, LRFS was significantly correlated with prescription dose (p = 0.029). Stratification by dose into high (23 to 24 Gy), intermediate (21 to 22 Gy), and low (18 to 20 Gy) dose levels revealed highly significant differences in LRFS between high (82%) and low doses (25%) (p < 0.0001). Overall, histology had no significant effect on LRFS (p = 0.16). Renal cell histology displayed a profound dose-response effect, with 80% LRFS at the high dose level (23 to 24 Gy) vs. 37% with low doses (≤22 Gy) (p = 0.04). However, for patients who received the high dose level, histology was not a statistically significant predictor of LRFS (p = 0.90). Target organ (bone vs. lymph node vs. soft tissues) (p = 0.5) and planning target volume size (p = 0.55) were not found to be associated with long-term LRFS probability. Multivariate Cox regression analysis confirmed prescription dose to be a significant predictor of LRFS (p = 0.003). Conclusion: High-dose SD-IGRT is a noninvasive procedure resulting in high probability of local tumor control. Single-dose IGRT may be effectively used to locally control metastatic deposits regardless of histology and target organ, provided sufficiently high doses (> 22 Gy) of radiation are delivered.
KW - IMRT
KW - Image-guided radiotherapy
KW - Metastases
KW - Single fraction
UR - http://www.scopus.com/inward/record.url?scp=79951943839&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2009.12.038
DO - 10.1016/j.ijrobp.2009.12.038
M3 - Article
C2 - 20510537
AN - SCOPUS:79951943839
VL - 79
SP - 1151
EP - 1157
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
SN - 0360-3016
IS - 4
ER -