Predicting 3D dose distribution with scale attention network for prostate radiotherapy

Saba Adabi, Tzu Chi Tsen, Yading Yuan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The growing demand for radiation therapy to treat cancer has been directed to focus on improving treatment planning flow for patients. Accurate dose prediction, therefore, plays a prominent role in this regard. In this study, we propose a framework based on our newly developed scale attention networks (SA-Net) to attain voxel-wise dose prediction. Our network 's dynamic scale attention model incorporates low-level details with high-level semantics from feature maps at different scales. To achieve more accurate results, we used distance data between each local voxel and the organ surfaces instead of binary masks of organs at risk as well as CT image as input of the network. The proposed method is tested on prostate cancer treated with Volumetric Modulated Arc Therapy (VMAT), where the model was training with 120 cases and tested on 20 cases. The average dose difference between the predicted dose and the clinical planned dose was 0.94 Gy, which is equivalent to 2.1% as compared to the prescription dose of 45 Gy. We also compared the performance of SA-Net dose prediction framework with different input format, the signed distance map vs. binary mask and showed the signed distance map was a better format as input to the model training. These findings show that our deep learning-based strategy of dose prediction is effectively feasible for automating the treatment planning in prostate cancer radiography.

Original languageEnglish
Title of host publicationMedical Imaging 2022
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
EditorsCristian A. Linte, Jeffrey H. Siewerdsen
PublisherSPIE
ISBN (Electronic)9781510649439
DOIs
StatePublished - 2022
EventMedical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling - Virtual, Online
Duration: 21 Mar 202227 Mar 2022

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12034
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling
CityVirtual, Online
Period21/03/2227/03/22

Keywords

  • Deep learning
  • dose prediction
  • prostate radiotherapy
  • scale attention

Fingerprint

Dive into the research topics of 'Predicting 3D dose distribution with scale attention network for prostate radiotherapy'. Together they form a unique fingerprint.

Cite this