TY - JOUR
T1 - Polyunsaturated Fatty Acids Mend Macrophage Transcriptome, Glycome, and Phenotype in the Patients with Neurodegenerative Diseases, Including Alzheimer's Disease
AU - Dover, Mary
AU - Moseley, Taylor
AU - Biskaduros, Adrienne
AU - Paulchakrabarti, Mousumi
AU - Hwang, Sung Hee
AU - Hammock, Bruce
AU - Choudhury, Biswa
AU - Kaczor-Urbanowicz, Karolina Elzbieta
AU - Urbanowicz, Andrzej
AU - Morselli, Marco
AU - Dang, Johnny
AU - Pellegrini, Matteo
AU - Paul, Ketema
AU - Bentolila, Laurent A.
AU - Fiala, Milan
AU - Pasinetti, Giulio
N1 - Publisher Copyright:
© 2023 - The authors. Published by IOS Press.
PY - 2023
Y1 - 2023
N2 - Background: Macrophages of healthy subjects have a pro-resolution phenotype, upload amyloid-β (Aβ) into endosomes, and degrade Aβ, whereas macrophages of patients with Alzheimer's disease (AD) generally have a pro-inflammatory phenotype and lack energy for brain clearance of Aβ. Objective: To clarify the pathogenesis of sporadic AD and therapeutic effects of polyunsaturated fatty acids (PUFA) with vitamins B and D and antioxidants on monocyte/macrophage (MM) migration in the AD brain, MM transcripts in energy and Aβ degradation, MM glycome, and macrophage clearance of Aβ. Methods: We followed for 31.3 months (mean) ten PUFA-supplemented neurodegenerative patients: 3 with subjective cognitive impairment (SCI), 2 with mild cognitive impairment (MCI), 3 MCI/vascular cognitive impairment, 2 with dementia with Lewy bodies, and 7 non-supplemented caregivers. We examined: monocyte migration in the brain and a blood-brain barrier model by immunochemistry and electron microscopy; macrophage transcriptome by RNAseq; macrophage glycome by N-glycan profiling and LTQ-Orbitrap mass spectrometry; and macrophage phenotype and phagocytosis by immunofluorescence. Results: MM invade Aβ plaques, upload but do not degrade Aβ, and release Aβ into vessels, which develop cerebrovascular amyloid angiopathy (CAA); PUFA upregulate energy and Aβ degradation enzyme transcripts in macrophages; PUFA enhance sialylated N-glycans in macrophages; PUFA reduce oxidative stress and increase pro-resolution MM phenotype, mitochondrial membrane potential, and Aβ phagocytosis (p<0.001). Conclusion: Macrophages of SCI, MCI, and AD patients have interrelated defects in the transcriptome, glycome, Aβ phagocytosis, and Aβ degradation. PUFA mend macrophage transcriptome, enrich glycome, enhance Aβ clearance, and benefit the cognition of early-stage AD patients.
AB - Background: Macrophages of healthy subjects have a pro-resolution phenotype, upload amyloid-β (Aβ) into endosomes, and degrade Aβ, whereas macrophages of patients with Alzheimer's disease (AD) generally have a pro-inflammatory phenotype and lack energy for brain clearance of Aβ. Objective: To clarify the pathogenesis of sporadic AD and therapeutic effects of polyunsaturated fatty acids (PUFA) with vitamins B and D and antioxidants on monocyte/macrophage (MM) migration in the AD brain, MM transcripts in energy and Aβ degradation, MM glycome, and macrophage clearance of Aβ. Methods: We followed for 31.3 months (mean) ten PUFA-supplemented neurodegenerative patients: 3 with subjective cognitive impairment (SCI), 2 with mild cognitive impairment (MCI), 3 MCI/vascular cognitive impairment, 2 with dementia with Lewy bodies, and 7 non-supplemented caregivers. We examined: monocyte migration in the brain and a blood-brain barrier model by immunochemistry and electron microscopy; macrophage transcriptome by RNAseq; macrophage glycome by N-glycan profiling and LTQ-Orbitrap mass spectrometry; and macrophage phenotype and phagocytosis by immunofluorescence. Results: MM invade Aβ plaques, upload but do not degrade Aβ, and release Aβ into vessels, which develop cerebrovascular amyloid angiopathy (CAA); PUFA upregulate energy and Aβ degradation enzyme transcripts in macrophages; PUFA enhance sialylated N-glycans in macrophages; PUFA reduce oxidative stress and increase pro-resolution MM phenotype, mitochondrial membrane potential, and Aβ phagocytosis (p<0.001). Conclusion: Macrophages of SCI, MCI, and AD patients have interrelated defects in the transcriptome, glycome, Aβ phagocytosis, and Aβ degradation. PUFA mend macrophage transcriptome, enrich glycome, enhance Aβ clearance, and benefit the cognition of early-stage AD patients.
KW - Alzheimer's disease
KW - amyloid-β
KW - cerebrovascular amyloid angiopathy
KW - coenzyme Q2
KW - glycome
KW - macrophage
KW - mitochondrial membrane potential
KW - phagocytosis
KW - polyunsaturated fatty acids
KW - transcriptome
UR - http://www.scopus.com/inward/record.url?scp=85145955283&partnerID=8YFLogxK
U2 - 10.3233/JAD-220764
DO - 10.3233/JAD-220764
M3 - Article
C2 - 36373322
AN - SCOPUS:85145955283
SN - 1387-2877
VL - 91
SP - 245
EP - 261
JO - Journal of Alzheimer's Disease
JF - Journal of Alzheimer's Disease
IS - 1
ER -