TY - GEN
T1 - Policy Gradient-Driven Noise Mask
AU - Yavuz, Mehmet Can
AU - Yang, Yang
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
PY - 2025
Y1 - 2025
N2 - Deep learning classifiers face significant challenges when dealing with heterogeneous multi-modal and multi-organ biomedical datasets. The low-level feature distinguishability limited to imaging-modality hinders the classifiers’ ability to learn high-level semantic relationships, resulting in sub-optimal performance. To address this issue, image augmentation strategies are employed as regularization techniques. While additive noise input during network training is a well-established augmentation as regularization method, modern pipelines often favor more robust techniques such as dropout and weight decay. This preference stems from the observation that combining these established techniques with noise input can adversely affect model performance. In this study, we propose a novel pretraining pipeline that learns to generate conditional noise mask specifically tailored to improve performance on multi-modal and multi-organ datasets. As a reinforcement learning algorithm, our approach employs a dual-component system comprising a very light-weight policy network that learns to sample conditional noise using a differentiable beta distribution as well as a classifier network. The policy network is trained using the reinforce algorithm to generate image-specific noise masks that regularize the classifier during pretraining. A key aspect is that the policy network’s role is limited to obtaining an intermediate (or heated) model before fine-tuning. During inference, the policy network is omitted, allowing direct comparison between the baseline and noise-regularized models. We conducted experiments and related analyses on RadImageNet datasets. Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
AB - Deep learning classifiers face significant challenges when dealing with heterogeneous multi-modal and multi-organ biomedical datasets. The low-level feature distinguishability limited to imaging-modality hinders the classifiers’ ability to learn high-level semantic relationships, resulting in sub-optimal performance. To address this issue, image augmentation strategies are employed as regularization techniques. While additive noise input during network training is a well-established augmentation as regularization method, modern pipelines often favor more robust techniques such as dropout and weight decay. This preference stems from the observation that combining these established techniques with noise input can adversely affect model performance. In this study, we propose a novel pretraining pipeline that learns to generate conditional noise mask specifically tailored to improve performance on multi-modal and multi-organ datasets. As a reinforcement learning algorithm, our approach employs a dual-component system comprising a very light-weight policy network that learns to sample conditional noise using a differentiable beta distribution as well as a classifier network. The policy network is trained using the reinforce algorithm to generate image-specific noise masks that regularize the classifier during pretraining. A key aspect is that the policy network’s role is limited to obtaining an intermediate (or heated) model before fine-tuning. During inference, the policy network is omitted, allowing direct comparison between the baseline and noise-regularized models. We conducted experiments and related analyses on RadImageNet datasets. Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
KW - Classification Accuracy
KW - Medical Imaging
KW - Policy Gradient Method
KW - Pretraining
KW - RadImageNet
KW - Reinforcement Learning
UR - http://www.scopus.com/inward/record.url?scp=85211899006&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-78195-7_28
DO - 10.1007/978-3-031-78195-7_28
M3 - Conference contribution
AN - SCOPUS:85211899006
SN - 9783031781940
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 414
EP - 431
BT - Pattern Recognition - 27th International Conference, ICPR 2024, Proceedings
A2 - Antonacopoulos, Apostolos
A2 - Chaudhuri, Subhasis
A2 - Chellappa, Rama
A2 - Liu, Cheng-Lin
A2 - Bhattacharya, Saumik
A2 - Pal, Umapada
PB - Springer Science and Business Media Deutschland GmbH
T2 - 27th International Conference on Pattern Recognition, ICPR 2024
Y2 - 1 December 2024 through 5 December 2024
ER -