Abstract
Background: Healthy plant-based diet index (hPDI) is associated with a lower risk of cardiometabolic conditions, but its association as well as interactions with microbiome have not been elucidated. Objectives: We aimed to investigate the interrelations between hPDI, gut microbiome, and cardiometabolic risk markers. Methods: hPDI was derived from dietary assessments by a validated FFQ and was examined in relation to metagenomic profiles of 911 fecal samples collected from 303 men aged 71 ± 4 y with an average BMI (in kg/m2) of 25.2 ± 3.6 in the Men's Lifestyle Validation Study. Principal coordinate (PCo) analysis based on Bray-Curtis dissimilarity was conducted, and interactions between hPDI and PCo were examined by using a metabolic risk score composed of blood lipids, BMI, and glycated hemoglobin. Results: After multivariable adjustment, hPDI was significantly associated with the relative abundance of 7 species and 9 pathways. In particular, higher hPDI was significantly associated with a higher relative abundance of Bacteroides cellulosilyticus and Eubacterium eligens, amino acid biosynthesis pathways (l-isoleucine biosynthesis I and III and l-valine biosynthesis), and the pathway of pyruvate fermentation to isobutanol. A favorable association between hPDI and the metabolic risk score was more pronounced among men with a higher PCo characterized by higher abundance of Bacteroides uniformis and lower abundance of Prevotella copri. At the individual species level, a similar interaction was also observed between hPDI and P. copri, as well as with Clostridium clostridioforme or Blautia hydrogenotrophica (all P-interaction < 0.01). Conclusion: A greater adherence to a healthy plant-based diet by older men was associated with a microbial profile characterized by a higher abundance of multiple species, including B. cellulosilyticus and E. eligens, as well as pathways in amino acid metabolism and pyruvate fermentation. In addition, inverse associations between healthy plant-based diet and human metabolic risk may partially depend on microbial compositions.
Original language | English |
---|---|
Pages (from-to) | 2780-2789 |
Number of pages | 10 |
Journal | Journal of Nutrition |
Volume | 151 |
Issue number | 9 |
DOIs | |
State | Published - 1 Sep 2021 |
Externally published | Yes |
Keywords
- diet
- metabolic
- microbiome
- plant-based diet index
- species