TY - JOUR
T1 - PI3 kinase integrates Akt and MAP kinase signaling pathways in the regulation of prostate cancer
AU - Goc, Anna
AU - Al-Husein, Belal
AU - Kochuparambil, Samith T.
AU - Liu, Junxiu
AU - Heston, Warren W.D.
AU - Somanath, Payaningal R.
PY - 2011/1
Y1 - 2011/1
N2 - PI3 kinase (PI3K), Akt and MAP kinase (MAPK) pathways are central to many classical signaling cascades and are often de-regulated in many cancers. Due to this, inhibitors for a number of key signaling molecules in these pathways such as PI3K, Akt, mTOR, Raf and ERK are currently in clinical trials. In the current study, we investigated the effects of specific inhibition of these signaling molecules, alone or in combinations, on prostate cancer cells. Our study showed that integration of Akt-mTOR and MAPK signaling by PI3K was essential for the EGF-stimulated TRAMP cell migration, proliferation, survival and invasion as well as PC3 and LNCaP C4-2 (C4-2) colony/foci formation. Adenovirus-mediated expression of constitutively active Akt (Ad-myrAkt) in PC3 cells resulted in significant increase in number of foci. Even though PI3K inhibition significantly reduced foci formed by C4-2 cells, none of the Akt, ERK or mTOR inhibitors showed any significant inhibition. This indicated that functional redundancies and/or feed back loops between Akt-mTOR and MAPK signaling exist in prostate cancer. Further studies on cotargeting these signaling molecules revealed that combined inhibition of Akt (or mTOR) and ERK, but not Akt and mTOR, resulted in significant reduction in number of foci formed by the C4-2 cells. Overall, our study demonstrated that the effects of PI3K-mediated prostate cancer growth necessitates a synergism between the Akt and MAPK pathways and suggests cotargeting Akt (or mTOR) and MAPK as an effective method for prostate cancer therapeutic interventions.
AB - PI3 kinase (PI3K), Akt and MAP kinase (MAPK) pathways are central to many classical signaling cascades and are often de-regulated in many cancers. Due to this, inhibitors for a number of key signaling molecules in these pathways such as PI3K, Akt, mTOR, Raf and ERK are currently in clinical trials. In the current study, we investigated the effects of specific inhibition of these signaling molecules, alone or in combinations, on prostate cancer cells. Our study showed that integration of Akt-mTOR and MAPK signaling by PI3K was essential for the EGF-stimulated TRAMP cell migration, proliferation, survival and invasion as well as PC3 and LNCaP C4-2 (C4-2) colony/foci formation. Adenovirus-mediated expression of constitutively active Akt (Ad-myrAkt) in PC3 cells resulted in significant increase in number of foci. Even though PI3K inhibition significantly reduced foci formed by C4-2 cells, none of the Akt, ERK or mTOR inhibitors showed any significant inhibition. This indicated that functional redundancies and/or feed back loops between Akt-mTOR and MAPK signaling exist in prostate cancer. Further studies on cotargeting these signaling molecules revealed that combined inhibition of Akt (or mTOR) and ERK, but not Akt and mTOR, resulted in significant reduction in number of foci formed by the C4-2 cells. Overall, our study demonstrated that the effects of PI3K-mediated prostate cancer growth necessitates a synergism between the Akt and MAPK pathways and suggests cotargeting Akt (or mTOR) and MAPK as an effective method for prostate cancer therapeutic interventions.
KW - Akt
KW - Mammalian target of rapamycin
KW - Mitogen-activated protein kinase
KW - PI3 kinase
KW - Prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=78650841337&partnerID=8YFLogxK
U2 - 10.3892/ijo-00000847
DO - 10.3892/ijo-00000847
M3 - Article
C2 - 21109949
AN - SCOPUS:78650841337
SN - 1019-6439
VL - 38
SP - 267
EP - 277
JO - International Journal of Oncology
JF - International Journal of Oncology
IS - 1
ER -