TY - JOUR
T1 - Pharmacogenetics of clozapine response and induced weight gain
T2 - A comprehensive review and meta-analysis
AU - Gressier, Florence
AU - Porcelli, Stefano
AU - Calati, Raffaella
AU - Serretti, Alessandro
N1 - Publisher Copyright:
© 2015 Elsevier B.V. and ECNP.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - Clozapine (CLZ) is the prototype atypical antipsychotic and it has many advantages over other antipsychotic drugs. Several data suggest that both CLZ response and induced weight gain are strongly determined by genetic variability. However, results remain mainly inconclusive. We aim to review the literature data about pharmacogenetics studies on CLZ efficacy, focusing on pharmacodynamic genes. Further, we performed meta-analyses on response when at least three studies for each polymorphism were available. Sensitivity analyses were conducted on Caucasian population when feasible. Electronic literature search was performed to identify pertinent studies published until May 2014 using PubMed, ISI Web of Knowledge and PsycINFO databases. For meta-analyses, data were entered and analyzed through RevMan version 5.2 using a random-effect model. Our literature search yielded 9266 articles on CLZ; among these, we identified 59 pertinent pharmacogenetic studies. Genotype data were retrieved for 14 polymorphisms in 9 genes. Among these, we had available data from at least three independent samples for 8 SNPs in 6 genes to perform meta-analyses: DRD2 rs1799732, DRD3 rs6280, HTR2A rs6313, rs6311, rs6314, HTR2C rs6318, HTR3A rs1062613, TNFa rs1800629. Although literature review provided conflicting results, in meta-analyses three genetic variants within serotonin genes resulted associated to CLZ response: rs6313 and rs6314 within HTR2A gene and rs1062613 within HT3A gene. On the other hand, no clear finding emerged for CLZ-induced weight gain. Our results suggest a possible serotonergic modulation of CLZ clinical response.
AB - Clozapine (CLZ) is the prototype atypical antipsychotic and it has many advantages over other antipsychotic drugs. Several data suggest that both CLZ response and induced weight gain are strongly determined by genetic variability. However, results remain mainly inconclusive. We aim to review the literature data about pharmacogenetics studies on CLZ efficacy, focusing on pharmacodynamic genes. Further, we performed meta-analyses on response when at least three studies for each polymorphism were available. Sensitivity analyses were conducted on Caucasian population when feasible. Electronic literature search was performed to identify pertinent studies published until May 2014 using PubMed, ISI Web of Knowledge and PsycINFO databases. For meta-analyses, data were entered and analyzed through RevMan version 5.2 using a random-effect model. Our literature search yielded 9266 articles on CLZ; among these, we identified 59 pertinent pharmacogenetic studies. Genotype data were retrieved for 14 polymorphisms in 9 genes. Among these, we had available data from at least three independent samples for 8 SNPs in 6 genes to perform meta-analyses: DRD2 rs1799732, DRD3 rs6280, HTR2A rs6313, rs6311, rs6314, HTR2C rs6318, HTR3A rs1062613, TNFa rs1800629. Although literature review provided conflicting results, in meta-analyses three genetic variants within serotonin genes resulted associated to CLZ response: rs6313 and rs6314 within HTR2A gene and rs1062613 within HT3A gene. On the other hand, no clear finding emerged for CLZ-induced weight gain. Our results suggest a possible serotonergic modulation of CLZ clinical response.
KW - Clozapine efficacy
KW - Pharmacodynamic
KW - Pharmacogenetics
KW - Serotonergic genes
KW - Weight gain
UR - http://www.scopus.com/inward/record.url?scp=84958113016&partnerID=8YFLogxK
U2 - 10.1016/j.euroneuro.2015.12.035
DO - 10.1016/j.euroneuro.2015.12.035
M3 - Review article
C2 - 26792444
AN - SCOPUS:84958113016
SN - 0924-977X
VL - 26
SP - 163
EP - 185
JO - European Neuropsychopharmacology
JF - European Neuropsychopharmacology
IS - 2
ER -