TY - JOUR
T1 - Perspectives in Melanoma
T2 - meeting report from the Melanoma Bridge (December 2nd – 4th, 2021, Italy)
AU - Ascierto, Paolo A.
AU - Agarwala, Sanjiv S.
AU - Blank, Christian
AU - Caracò, Corrado
AU - Carvajal, Richard D.
AU - Ernstoff, Marc S.
AU - Ferrone, Soldano
AU - Fox, Bernard A.
AU - Gajewski, Thomas F.
AU - Garbe, Claus
AU - Grob, Jean Jacques
AU - Hamid, Omid
AU - Krogsgaard, Michelle
AU - Lo, Roger S.
AU - Lund, Amanda W.
AU - Madonna, Gabriele
AU - Michielin, Olivier
AU - Neyns, Bart
AU - Osman, Iman
AU - Peters, Solange
AU - Poulikakos, Poulikos I.
AU - Quezada, Sergio A.
AU - Reinfeld, Bradley
AU - Zitvogel, Laurence
AU - Puzanov, Igor
AU - Thurin, Magdalena
N1 - Funding Information:
No conflict to disclose. Employment or Leadership Position: None; Consultant/Advisory Role: Bristol-Meyers Squibb, Roche-Genentech, Merck Sharp & Dohme, Novartis, Merck Serono, Pierre-Fabre, AstraZeneca, Sun Pharma, Sanofi, Idera, Sandoz, Immunocore, 4SC, Italfarmaco, Nektar, Boehringer-Ingelheim, Eisai, Regeneron, Daiichi Sankyo, Pfizer, OncoSec, Nouscom, Lunaphore, Seagen, iTeos, Medicenna; Stock Ownership: None; Research Funding: Bristol-Meyers Squibb, Roche-Genentech, Pfizer, Sanofi; Expert Testimony: None; Other Remuneration: None. Advisory role: BMS, MSD, Roche, Novartis, GSK, AZ, Pfizer, Lilly, GenMab, Pierre Fabre, Third Rock Ventures; Research funding: BMS, Novartis, NanoString, 4SC; Stockownership: co-founder Immagene BV; Pending patent: WO 2021/177822 A1. no conflict to disclose. Consulting: Alkermes, Bristol Myers Squibb, Castle Biosciences, Ideaya, Immunocore, InxMed, Iovance, Merck, Novartis, Oncosec, Pierre Fabre, PureTech Health, Regeneron, Sanofi Genzyme, Sorrento Therapeutics, Trisalus; Clinical/Scientific Advisory Boards: Aura Biosciences, Chimeron, Rgenix; Research Funding to Columbia University: Amgen, Astellis, AstraZeneca, Bristol-Myers Squibb, Corvus, Ideaya, Immunocore, Iovance, Merck, Mirati, Novartis, Pfizer, Plexxikon, Regeneron, Roche/Genentech. no conflict to disclose. Scientific Advisory Board (Advising/Consulting): Akoya/PerkinElmer, AstraZeneca/Definiens, Bristol-Myers Squibb, CanWell, Hookipa, Incyte, Macrogenics, NeoGenomics, PrimeVax (BOD, stock), Turnstone, UbiVac, Co-founder/CEO/stock, Ultivue; Research Support: Akoya/PerkinElmer, Bristol-Myers Squibb, Definies/AstraZeneca, Incyte, Macrogenics, NanoString, OncoSec Shimadzu, Viralytics/Merck. Consultant/advisory boards: Merck, Jounce, Fog Pharma, Adaptimmune, Pyxis, Allogene, Catalym, Bicara, Maia, Samyang; Research support: BMS, Merck, Seattle Genetics, Evelo, Bayer, Pyxis; Intellectual property/licensing: Aduro, Evelo, BMS; Cofounder/shareholder: Jounce, Pyxis. Bristol Myers Squibb, Merck Sharp & Dohme, NeraCare, Novartis, Philogen, Roche, Sanofi. Research funding: Amgen, BMS, Merck, MSD, Novartis, Pfizer, Philogen, Pierre-Fabre, Roche. Honoraria: Bristol-Myers Squibb, Novartis, Pfizer and Sanofi/Regeneron; Consultant or advisor: Aduro, Akeso, Alkermes, Amgen, BeiGene, Bioatla, Bristol-Myers Squibb, Roche Genentech, GlaxoSmithKline, Immunocore, Idera, Incyte, InstilBio, Iovance, Janssen, Merck, NextCure, Novartis, Pfizer, Sanofi Regeneron, Seattle Genetics, Tempus, and Zelluna; has participated in a speakers bureau for Bristol-Myers Squibb, Novartis, Pfizer, and Sanofi Regeneron; institutional research funding: Arcus, Aduro, Akeso, Amgen, Bioatla, Bristol-Myers Squibb, CytomX Therapeutics, Exelixis, Roche Genentech, GlaxoSmithKline, Immunocore, Idera, Incyte, Iovance, Merck, Merck Serono, Moderna, NextCure, Novartis, Pfizer, Rubius, Sanofi Regeneron, Seattle Genetics, Taiga, Torque, and Zelluna. Research support: Merck, Roche and Genentech; Scientific Advisory Board: Neximmune; Consulting: Guidepoint. Research funding: Merck, OncoSec; Clinical trial funding: Pfizer, BMS. no conflict to disclose. Personal financial interests: Honoraria as speaker, consultancy or advisory role: BMS, Roche, Amgen, MSD, Novartis, GSK, Pierre-Fabre; Stock ownership: None; Direct Research Funding: BMS, MSD, Merk and Amgen; Institutional financial interests: Research Funding: BMS, MSD and Amgen. personal financial compensation from Pfizer, Roche, Bristol-Myers Squibb, Merck Sharp & Dohme, Novartis, AstraZeneca, BioCartis for public speaking, consultancy and participation in advisory board meetings. My institution (UZ Brussel) received research funding related to research projects conducted by my team from Pfizer, Novartis, Roche, Merck-Serono. no conflict to disclose. I have received education grants, provided consultation, attended advisory boards and/or provided lectures for the following organizations, from whom I have received honoraria (all fees to institution): Consultation/Advisory role: AbbVie, Amgen, Arcus, AstraZeneca, Bayer, Beigene, Biocartis, BioInvent, Blueprint Medicines, Boehringer Ingelheim, Bristol-Myers Squibb, Clovis, Daiichi Sankyo, Debiopharm, ecancer, Eli Lilly, Elsevier, F-Star, Fishawack, Foundation Medicine, Genzyme, Gilead, GSK, Illumina, Imedex, IQVIA, Incyte, iTeos, Janssen, Medscape, Merck Sharp and Dohme, Merck Serono, Merrimack, Novartis, Novocure, OncologyEducation, Pharma Mar, Phosplatin Therapeutics, PER, Pfizer, PRIME, Regeneron, RMEI, Roche/Genentech, RTP, Sanofi, Seattle Genetics, Takeda, Vaccibody; Talk in a company’s organized public event: AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, ecancer, Eli Lilly, Foundation Medicine, Illumina, Imedex, Medscape, Merck Sharp and Dohme, Mirati, Novartis, PER, Pfizer, Prime, Roche/Genentech, RTP, Sanofi, Takeda; Receipt of grants/research supports: Principal investigator in trials (institutional financial support for clinical trials) sponsored by Amgen, AstraZeneca, Beigene, Bristol-Myers Squibb, GSK, Merck Sharp and Dohme, Roche/Genentech. reports research funding to his institution by Black Diamond Therapeutics and Verastem Oncology. no conflict to disclose. Founder of a Biotech. Cie involved in the cancer/microbiome space EveImmune; Member of the board of director of Transgene; Member of the scientific advisory board of Transgene, EpiVax, Lytix Biopharma; Honoraria: Transgene; Current research contracts with: Kaleido, Pileje, Transgene, Daiichi Sankyo. Consulting/Honoraria: Nektar, Amgen, Roche, Oncorus; Advisory Board: Bristol-Myers Squibb, Nektar; Institutional Clinical Trial Support: Nektar, Idera, Oncosec, Amgen, Immunocore, Dynavax, Rubius, SQZ, ADC; DSMC: Nouscom; Stock: Celldex. no conflict to disclose.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.
AB - Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.
KW - Adjuvant
KW - Anti-CTLA-4
KW - Anti-PD-1
KW - BRAF inhibitor
KW - Biomarkers
KW - Combination strategies
KW - Immunotherapy
KW - MEK inhibitor
KW - Melanoma
KW - Neoadjuvant
KW - Target therapy
UR - http://www.scopus.com/inward/record.url?scp=85137185925&partnerID=8YFLogxK
U2 - 10.1186/s12967-022-03592-4
DO - 10.1186/s12967-022-03592-4
M3 - Article
C2 - 36058945
AN - SCOPUS:85137185925
SN - 1479-5876
VL - 20
JO - Journal of Translational Medicine
JF - Journal of Translational Medicine
IS - 1
M1 - 391
ER -