TY - JOUR
T1 - Perilipin 5 ameliorates high-glucose-induced podocyte injury via Akt/GSK-3β/Nrf2-mediated suppression of apoptosis, oxidative stress, and inflammation
AU - Feng, Jie
AU - Xie, Liyi
AU - Yu, Xiaoyang
AU - Liu, Chao
AU - Dong, Hongjuan
AU - Lu, Wanhong
AU - Kong, Ranran
N1 - Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2021/3/12
Y1 - 2021/3/12
N2 - Hyperglycemia-induced podocyte damage contributes to the onset of diabetic nephropathy, a severe complication of diabetes. Perilipin 5 (Plin5) exerts a vital role in numerous pathological conditions via affecting cell apoptosis, oxidative stress, and inflammation. However, whether Plin5 plays a role in regulating podocyte damage of diabetic nephropathy has not been fully determined. This work aimed to explore the role of Plin5 in mediating high glucose (HG)-induced injury of podocytes in vitro. Our results demonstrated that Plin5 expression was markedly decreased in mouse podocytes challenged with HG. Plin5 overexpression markedly suppressed HG-induced apoptosis, reactive oxygen species (ROS) production, and the pro-inflammatory response in podocytes. On the contrary, Plin5 silencing produced the opposite effects. Further mechanistic analysis demonstrated that Plin5 upregulation remarkably increased the levels of phospho-Akt and phospho-glycogen synthase kinase-3β (GSK-3β) in HG-exposed podocytes. Moreover, Plin5 overexpression increased the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2 signaling. Akt inhibition markedly blocked Plin5-mediated activation of Nrf2, while GSK-3β inhibition reversed Plin5-silencing-induced suppressive effects on Nrf2 activation. Notably, Nrf2 suppression significantly blocked Plin5-mediated protective effects against HG-induced podocyte injury. In summary, our work indicates a vital role for Plin5 in protecting against HG-induced apoptosis, oxidative stress, and inflammation in podocytes via modulation of Akt/GSK-3β/Nrf2 signaling. This study suggests that Plin5 may participate in modulating podocyte damage in diabetic nephropathy.
AB - Hyperglycemia-induced podocyte damage contributes to the onset of diabetic nephropathy, a severe complication of diabetes. Perilipin 5 (Plin5) exerts a vital role in numerous pathological conditions via affecting cell apoptosis, oxidative stress, and inflammation. However, whether Plin5 plays a role in regulating podocyte damage of diabetic nephropathy has not been fully determined. This work aimed to explore the role of Plin5 in mediating high glucose (HG)-induced injury of podocytes in vitro. Our results demonstrated that Plin5 expression was markedly decreased in mouse podocytes challenged with HG. Plin5 overexpression markedly suppressed HG-induced apoptosis, reactive oxygen species (ROS) production, and the pro-inflammatory response in podocytes. On the contrary, Plin5 silencing produced the opposite effects. Further mechanistic analysis demonstrated that Plin5 upregulation remarkably increased the levels of phospho-Akt and phospho-glycogen synthase kinase-3β (GSK-3β) in HG-exposed podocytes. Moreover, Plin5 overexpression increased the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2 signaling. Akt inhibition markedly blocked Plin5-mediated activation of Nrf2, while GSK-3β inhibition reversed Plin5-silencing-induced suppressive effects on Nrf2 activation. Notably, Nrf2 suppression significantly blocked Plin5-mediated protective effects against HG-induced podocyte injury. In summary, our work indicates a vital role for Plin5 in protecting against HG-induced apoptosis, oxidative stress, and inflammation in podocytes via modulation of Akt/GSK-3β/Nrf2 signaling. This study suggests that Plin5 may participate in modulating podocyte damage in diabetic nephropathy.
KW - Diabetic nephropathy
KW - High glucose
KW - Nrf2
KW - Perilipin 5
KW - Podocyte
UR - http://www.scopus.com/inward/record.url?scp=85100045084&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2021.01.069
DO - 10.1016/j.bbrc.2021.01.069
M3 - Article
C2 - 33516878
AN - SCOPUS:85100045084
SN - 0006-291X
VL - 544
SP - 22
EP - 30
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
ER -