TY - JOUR
T1 - Parathyroid Hormone-related Protein in the Pancreatic Islet and the Cardiovascular System
AU - Vasavada, Rupangi C.
AU - Garcia-Ocana, Adolfo
AU - Massfelder, Thierry
AU - Dann, Pamela
AU - Stewart, Andrew F.
PY - 1998
Y1 - 1998
N2 - Parathyroid hormone-related protein was discovered as the causative agent responsible for the common paraneoplastic syndrome, humoral hypercalcemia of malignancy. It is now clear that the PTHrP gene is expressed in virtually every cell and tissue in the body at some point in development or adult life and that the peptide is critical for normal life. Two of the tissues that produce PTHrP are the insulin-producing beta cells of the pancreatic islet and the vascular smooth muscle cells of the arterial wall. In this review, the physiologic roles of PTHrP in the islet and in the arterial wall are explored. PTHrP is a classical neuroendocrine prohormone that undergoes extensive post-translational processing to yield a family of daughter peptides that are the mature secretory forms of the peptide. In addition to its ability to act as a traditional endocrine, paracrine, or autocrine factor, PTHrP appears to be able to act as an "intracrine" factor as well, directly entering the nucleus after translation and stimulating proliferation, apoptosis, and perhaps other cellular responses as well. The cell biology underlying this phenomenon is also explored herein.
AB - Parathyroid hormone-related protein was discovered as the causative agent responsible for the common paraneoplastic syndrome, humoral hypercalcemia of malignancy. It is now clear that the PTHrP gene is expressed in virtually every cell and tissue in the body at some point in development or adult life and that the peptide is critical for normal life. Two of the tissues that produce PTHrP are the insulin-producing beta cells of the pancreatic islet and the vascular smooth muscle cells of the arterial wall. In this review, the physiologic roles of PTHrP in the islet and in the arterial wall are explored. PTHrP is a classical neuroendocrine prohormone that undergoes extensive post-translational processing to yield a family of daughter peptides that are the mature secretory forms of the peptide. In addition to its ability to act as a traditional endocrine, paracrine, or autocrine factor, PTHrP appears to be able to act as an "intracrine" factor as well, directly entering the nucleus after translation and stimulating proliferation, apoptosis, and perhaps other cellular responses as well. The cell biology underlying this phenomenon is also explored herein.
UR - http://www.scopus.com/inward/record.url?scp=0031616423&partnerID=8YFLogxK
M3 - Article
C2 - 9769713
AN - SCOPUS:0031616423
SN - 0079-9963
VL - 53
SP - 305
EP - 338
JO - Recent Progress in Hormone Research
JF - Recent Progress in Hormone Research
ER -