Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis

A. Castegna, L. Palmieri, I. Spera, V. Porcelli, F. Palmieri, M. J. Fabis-Pedrini, R. B. Kean, D. A. Barkhouse, M. T. Curtis, D. C. Hooper

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Pathological changes occur in areas of CNS tissue remote from inflammatory lesions in multiple sclerosis (MS) and its animal model experimental allergic encephalomyelitis (EAE). To determine if oxidative stress is a significant contributor to this non-inflammatory pathology, cortex tissues from mice with clinical signs of EAE were examined for evidence of inflammation and oxidative stress. Histology and gene expression analysis showed little evidence of immune/inflammatory cell invasion but reductions in natural antioxidant levels and increased protein oxidation that paralleled disease severity. Two-dimensional oxyblots and mass-spectrometry-based protein fingerprinting identified glutamine synthetase (GS) as a particular target of oxidation. Oxidation of GS was associated with reductions in enzyme activity and increased glutamate/glutamine levels. The possibility that this may cause neurodegeneration through glutamate excitotoxicity is supported by evidence of increasing cortical Ca2+ levels in cortex extracts from animals with greater disease severity. These findings indicate that oxidative stress occurs in brain areas that are not actively undergoing inflammation in EAE and that this can lead to a neurodegenerative process due to the susceptibility of GS to oxidative inactivation.

Original languageEnglish
Pages (from-to)97-105
Number of pages9
JournalNeuroscience
Volume185
DOIs
StatePublished - 30 Jun 2011
Externally publishedYes

Keywords

  • Experimental allergic encephalomyelitis
  • Glutamine synthetase
  • Multiple sclerosis
  • Oxidative stress

Fingerprint

Dive into the research topics of 'Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis'. Together they form a unique fingerprint.

Cite this