Recent advances in Photon Counting CT (PCCT) have facilitated the simultaneous acquisition of multiple image volumes with differing energy thresholds. This presents the user with several choices for energy threshold combinations. As compared to standard clinical Dual kVp CT, where the user typically has only three choices of kVp pairings (e.g., 80/150Sn, 90/150Sn, 100/150Sn), a "quad" PCCT system with 14 threshold settings has Choose(14,4)= 1001 possible threshold combinations (assuming no restrictions). In this paper we describe a computationally tractable means to order, from best (most accurate) to worst (least accurate), threshold combinations for the task of discriminating pure materials of assumed approximate concentrations using the Bhattacharyya Coefficient. We observe that this ordering is not necessarily identical to the ordering for the task of decomposing material mixtures into their components. We demonstrate our approach on phantom data.

Original languageEnglish
Title of host publicationMedical Imaging 2016
Subtitle of host publicationPhysics of Medical Imaging
EditorsDespina Kontos, Joseph Y. Lo, Thomas G. Flohr
ISBN (Electronic)9781510600188
StatePublished - 2016
EventMedical Imaging 2016: Physics of Medical Imaging - San Diego, United States
Duration: 28 Feb 20162 Mar 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


ConferenceMedical Imaging 2016: Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego


Dive into the research topics of 'Optimal selection of thresholds for photon counting CT'. Together they form a unique fingerprint.

Cite this