TY - JOUR
T1 - Opioid neuropeptide genotypes in relation to heroin abuse
T2 - Dopamine tone contributes to reversed mesolimbic proenkephalin expression
AU - Nikoshkov, Andrej
AU - Drakenberg, Katarina
AU - Wang, Xinyu
AU - Horvath, Monika Cs
AU - Keller, Eva
AU - Hurd, Yasmin L.
PY - 2008/1/15
Y1 - 2008/1/15
N2 - Striatal enkephalin and dynorphin opioid systems mediate reward and negative affect, respectively, relevant to addiction disorders. We examined polymorphisms of proenkephalin (PENK) and prodynorphin (PDYN) genes in relation to heroin abuse and gene expression in the human striatum and the relevance of genetic dopaminergic tone, critical for drug reward and striatal function. Heroin abuse was significantly associated with PENK polymorphic 3′ UTR dinucleotide (CA) repeats; 79% of subjects homozygous for the 79-bp allele were heroin abusers. Such individuals tended to express higher PENK mRNA than the 81-bp homozygotes, but PENK levels within the nucleus accumbens (NAc) shell were most strongly correlated to catecholamine-O-methyltransferase (COMT) genotype. Control Met/Met individuals expressed lower PENK mRNA than Val carriers, a pattern reversed in heroin users. Up-regulation of NAc PENK in Met/Met heroin abusers was accompanied by impaired tyrosine hydroxylase (TH)mRNAexpression in mesolimbic dopamine neurons. In contrast to PENK, no association was detected between PDYN genotype (68-bp repeat element containing one to four copies of AP-1 binding sites in the promoter region) and heroin abuse, although there was a clear functional association with striatal PDYN mRNA expression: an increased number of inducible repeats (three and four) correlated with higher PDYN levels than adult or fetal subjects with noninducible (one and two) alleles. Moreover, PDYN expression was not related to COMT genotype. Altogether, the data suggest that dysfunction of the opioid reward system is significantly linked to opiate abuse vulnerability and that heroin use alters the apparent influence of heritable dopamine tone on mesolimbic PENK and TH function.
AB - Striatal enkephalin and dynorphin opioid systems mediate reward and negative affect, respectively, relevant to addiction disorders. We examined polymorphisms of proenkephalin (PENK) and prodynorphin (PDYN) genes in relation to heroin abuse and gene expression in the human striatum and the relevance of genetic dopaminergic tone, critical for drug reward and striatal function. Heroin abuse was significantly associated with PENK polymorphic 3′ UTR dinucleotide (CA) repeats; 79% of subjects homozygous for the 79-bp allele were heroin abusers. Such individuals tended to express higher PENK mRNA than the 81-bp homozygotes, but PENK levels within the nucleus accumbens (NAc) shell were most strongly correlated to catecholamine-O-methyltransferase (COMT) genotype. Control Met/Met individuals expressed lower PENK mRNA than Val carriers, a pattern reversed in heroin users. Up-regulation of NAc PENK in Met/Met heroin abusers was accompanied by impaired tyrosine hydroxylase (TH)mRNAexpression in mesolimbic dopamine neurons. In contrast to PENK, no association was detected between PDYN genotype (68-bp repeat element containing one to four copies of AP-1 binding sites in the promoter region) and heroin abuse, although there was a clear functional association with striatal PDYN mRNA expression: an increased number of inducible repeats (three and four) correlated with higher PDYN levels than adult or fetal subjects with noninducible (one and two) alleles. Moreover, PDYN expression was not related to COMT genotype. Altogether, the data suggest that dysfunction of the opioid reward system is significantly linked to opiate abuse vulnerability and that heroin use alters the apparent influence of heritable dopamine tone on mesolimbic PENK and TH function.
KW - Catecholamine-O-methyltransferase
KW - Drug abuse
KW - Mu opioid receptor
KW - Nucleus accumbens
KW - Prodynorphin
UR - http://www.scopus.com/inward/record.url?scp=38649097175&partnerID=8YFLogxK
U2 - 10.1073/pnas.0710902105
DO - 10.1073/pnas.0710902105
M3 - Article
C2 - 18184800
AN - SCOPUS:38649097175
SN - 0027-8424
VL - 105
SP - 786
EP - 791
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 2
ER -