TY - JOUR
T1 - Ongoing immunoglobulin class switch DNA recombination in lupus B cells
T2 - Analysis of switch regulatory regions
AU - Liu, Shiquan
AU - Cerutti, Andrea
AU - Casali, Paolo
AU - Crow, Mary K.
N1 - Funding Information:
This work was supported by NIH grants R01 AI 45011 and R01 AR 40908 to P.C., NIH grant R01 AI 42185 and grants from The Alliance for Lupus Research, The Lupus Research Institute and The Mary Kirkland Center for Lupus Research to M.K.C.
PY - 2004/9
Y1 - 2004/9
N2 - Inflammation and tissue damage in systemic lupus erythematosus (SLE) are mediated by class-switched autoantibodies reactive with nucleic acids, nucleic acid-binding proteins, phospholipids and other self-antigens. While some healthy individuals produce IgM antibodies with specificities similar to those of lupus patients, immunoglobulin class switching to mature downstream isotypes appears to be required for the generation of pathogenic autoantibodies. To characterize the cellular and molecular basis of pathogenic autoantibody production in SLE, we studied the capacity of peripheral blood B cells of naïve phenotype from patients with SLE, rheumatoid arthritis (RA) or healthy control subjects to spontaneously switch to IgG and IgA. In addition, we determined the DNA sequences of the upstream evolutionary conserved sequence (ECS-Iγ promoter regulatory regions that control germline IH-CH transcription and class switch DNA recombination (CSR) to IgG1, IgG2 and IgG4. IgM+IgD+ B cells from patients with SLE, but not those from RA or healthy control subjects, underwent spontaneous CSR, as assessed by expression of germline Iγ1-Cγ1, Iγ2-Cγ2, Iγ3-Cγ3, Iγ4-Cγ4 and Iα1-Cα1 transcripts, mature (switched) VHDJH-Cγ1, VHDJH-Cγ2, VHDJH-Cγ3 and VHDJH-Cα1 transcripts and secreted IgG and IgA. Although polymorphic DNA sequences were identified in the ECS-Iγ1, ECS-Iγ2 and ECS-Iγ4 promoter regions, the transcription factor-binding sites that mediate germline Iγ-Cγ transcription were conserved in patients and controls. However, distinct patterns of nuclear protein binding to an ECS-Iγ promoter sequence that contains both positive and negative regulatory elements were observed in SLE patients and controls. These results support a role for exogenous signals, such as through CD40 ligation, rather than altered genomic sequence, in the increased production of class switched autoantibodies in SLE.
AB - Inflammation and tissue damage in systemic lupus erythematosus (SLE) are mediated by class-switched autoantibodies reactive with nucleic acids, nucleic acid-binding proteins, phospholipids and other self-antigens. While some healthy individuals produce IgM antibodies with specificities similar to those of lupus patients, immunoglobulin class switching to mature downstream isotypes appears to be required for the generation of pathogenic autoantibodies. To characterize the cellular and molecular basis of pathogenic autoantibody production in SLE, we studied the capacity of peripheral blood B cells of naïve phenotype from patients with SLE, rheumatoid arthritis (RA) or healthy control subjects to spontaneously switch to IgG and IgA. In addition, we determined the DNA sequences of the upstream evolutionary conserved sequence (ECS-Iγ promoter regulatory regions that control germline IH-CH transcription and class switch DNA recombination (CSR) to IgG1, IgG2 and IgG4. IgM+IgD+ B cells from patients with SLE, but not those from RA or healthy control subjects, underwent spontaneous CSR, as assessed by expression of germline Iγ1-Cγ1, Iγ2-Cγ2, Iγ3-Cγ3, Iγ4-Cγ4 and Iα1-Cα1 transcripts, mature (switched) VHDJH-Cγ1, VHDJH-Cγ2, VHDJH-Cγ3 and VHDJH-Cα1 transcripts and secreted IgG and IgA. Although polymorphic DNA sequences were identified in the ECS-Iγ1, ECS-Iγ2 and ECS-Iγ4 promoter regions, the transcription factor-binding sites that mediate germline Iγ-Cγ transcription were conserved in patients and controls. However, distinct patterns of nuclear protein binding to an ECS-Iγ promoter sequence that contains both positive and negative regulatory elements were observed in SLE patients and controls. These results support a role for exogenous signals, such as through CD40 ligation, rather than altered genomic sequence, in the increased production of class switched autoantibodies in SLE.
KW - DNA
KW - Immunoglobulin
KW - Lupus B cells
KW - Polymorphism
KW - SLE
UR - http://www.scopus.com/inward/record.url?scp=12344316846&partnerID=8YFLogxK
U2 - 10.1080/08916930400010611
DO - 10.1080/08916930400010611
M3 - Article
C2 - 15621569
AN - SCOPUS:12344316846
SN - 0891-6934
VL - 37
SP - 431
EP - 443
JO - Autoimmunity
JF - Autoimmunity
IS - 6-7
ER -