Omicron B.1.1.529 variant infections associated with severe disease are uncommon in a COVID-19 under-vaccinated, high SARS-CoV-2 seroprevalence population in Malawi

Upendo L. Mseka, Jonathan Mandolo, Kenneth Nyoni, Oscar Divala, Dzinkambani Kambalame, Daniel Mapemba, Moses Kamzati, Innocent Chibwe, Marc Y.R. Henrion, Kingsley Manda, Deus Thindwa, Memory Mvula, Bright Odala, Raphael Kamng'ona, Nelson Dzinza, Khuzwayo C. Jere, Nicholas Feasey, Antonia Ho, Abena S. Amoah, Melita GordonTodd D. Swarthout, Amelia Crampin, Robert S. Heyderman, Matthew Kagoli, Evelyn Chitsa-Banda, Collins Mitambo, John Phuka, Benson Chilima, Watipaso Kasambara, Kondwani C. Jambo, Annie Chauma-Mwale

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Background: The B.1.1.529 (Omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the fourth COVID-19 pandemic wave across the southern African region, including Malawi. The seroprevalence of SARS-CoV-2 antibodies and their association with epidemiological trends of hospitalisations and deaths are needed to aid locally relevant public health policy decisions. Methods: We conducted a population-based serosurvey from December 27, 2021 to January 17, 2022, in 7 districts across Malawi to determine the seroprevalence of SARS-CoV-2 antibodies. Serum samples were tested for antibodies against SARS-CoV-2 receptor binding domain using WANTAI SARS-CoV-2 Receptor Binding Domain total antibody commercial enzyme-linked immunosorbent assay (ELISA). We also evaluated COVID-19 epidemiologic trends in Malawi, including cases, hospitalisations and deaths from April 1, 2021 through April 30, 2022, collected using the routine national COVID-19 reporting system. A multivariable logistic regression model was developed to investigate the factors associated with SARS-CoV-2 seropositivity. Findings: Serum samples were analysed from 4619 participants (57% female; 60% aged 18–50 years), of whom 878/3794 (23%) of vaccine eligible adults had received a single dose of any COVID-19 vaccine. The overall assay-adjusted seroprevalence was 83.7% (95% confidence interval (CI), 79.3%–93.4%). Seroprevalence was lowest among children <13 years of age (66%) and highest among adults 18–50 years of age (82%). Seroprevalence was higher among vaccinated compared to unvaccinated participants (1 dose, 94% vs. 77%, adjusted odds ratio 4.89 [95% CI, 3.43–7.22]; 2 doses, 97% vs. 77%, aOR 6.62 [95% CI, 4.14–11.3]). Urban residents were more likely to be seropositive than those from rural settings (91% vs. 78%, aOR 2.76 [95% CI, 2.16–3.55]). There was at least a two-fold reduction in the proportion of hospitalisations and deaths among the reported cases in the fourth wave compared to the third wave (hospitalisations, 10.7% (95% CI, 10.2–11.3) vs. 4.86% (95% CI, 4.52–5.23), p < 0.0001; deaths, 3.48% (95% CI, 3.18–3.81) vs. 1.15% (95% CI, 1.00–1.34), p < 0.0001). Interpretation: We report reduction in proportion of hospitalisations and deaths from SARS-CoV-2 infections during the Omicron variant dominated wave in Malawi, in the context of high SARS-CoV-2 seroprevalence and low COVID-19 vaccination coverage. These findings suggest that COVID-19 vaccination policy in high seroprevalence settings may need to be amended from mass campaigns to targeted vaccination of reported at-risk populations. Funding: Supported by the Bill and Melinda Gates Foundation ( INV-039481).

Original languageEnglish
Article number101800
JournaleClinicalMedicine
Volume56
DOIs
StatePublished - Feb 2023
Externally publishedYes

Keywords

  • Anti-RBD antibodies
  • COVID-19
  • Malawi
  • Omicron
  • SARS-CoV-2

Cite this