Number of oligodendrocyte progenitors recruited to the lesioned spinal cord is modulated by the levels of the cell cycle regulatory protein p27Kip-1

David P. Crockett, Mark Burshteyn, Corina Garcia, Michela Muggironi, Patrizia Casaccia-Bonnefil

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Remyelination is a critical step for recovery of function after demyelination and defines the ability to generate new myelin. This repair process is dependent on the presence of resident oligodendrocyte progenitors (OLPs) that have been shown to remyelinate axons after demyelination. We have previously shown that the levels of the cell cycle inhibitor p27Kip-1 modulate the number of neonatal cortical OLPs. We now asked whether this cell cycle molecule plays also a role in regulating the number of adult OLP in the spinal cord after demyelination induced by lysolecithin injection. The proliferative response of OLP in the spinal cord of injected wild-type (wt) and p27Kip-1 null mice was evaluated 3 days after lesion. In vivo labeling with bromodeoxyuridine (BrdU) was used to identify cells in S phase. Double immunofluorescence for the OLP marker NG2, and for BrdU was used to count the number of proliferating progenitors. Consistent with a role of p27Kip-1 in regulating the number of adult OLP in the injured spinal cord, a larger number of proliferating OLPs was observed in p27Kip-1 null mice compared with wild-type controls. These cells were able to differentiate as assessed by the presence of MBP+ cells in the spinal cord 14 days after injury. We conclude that the cellular levels of the cell cycle inhibitor p27Kip-1 modulate the repair response of OLPs to injury in the adult spinal cord.

Original languageEnglish
Pages (from-to)301-308
Number of pages8
JournalGLIA
Volume49
Issue number2
DOIs
StatePublished - 15 Jan 2005
Externally publishedYes

Keywords

  • Multiple sclerosis
  • Proliferation
  • Remyelination
  • Spinal cord injury

Fingerprint

Dive into the research topics of 'Number of oligodendrocyte progenitors recruited to the lesioned spinal cord is modulated by the levels of the cell cycle regulatory protein p27Kip-1'. Together they form a unique fingerprint.

Cite this