TY - JOUR
T1 - Nrf2 and antioxidant defense against CYP2E1 toxicity
AU - Cederbaum, Arthur
N1 - Funding Information:
Research in the author’s lab was supported by NIH AA 017425 and AA 03312 grants. The author states no other conflict of interest.
PY - 2009/10
Y1 - 2009/10
N2 - The transcription factor Nrf2 regulates the expression of important cytoprotective enzymes. Induction of CYP2E1 is one of the central pathways by which ethanol generates oxidative stress. CYP2E1 can be induced by ethanol and several low molecular mass chemicals such as pyrazole. This review discusses biochemical and toxicological effects of CYP2E1 and the effects of Nrf2 in modulating these actions of CYP2E1. Besides ethanol, CYP2E1 metabolizes and activates many other toxicologic important compounds. One approach to try to understand the basic effects and actions of CYP2E1 was to establish HepG2 cell lines that constitutively express human CYP2E1. Ethanol, polyunsaturated fatty acids and iron were toxic to the HepG2 cells, which express CYP2E1 (E47 cells) but not control C34HepG2 cells, which do not express CYP2E1. Toxicity was associated with enhanced oxidant stress and could be prevented by antioxidants and potentiated if glutathione was removed. The E47 cells had higher glutathione levels and a twofold increase in catalase, cytosolic and microsomal glutathione transferase, and heme oxygenase-1 than control HepG2 cells due to activation of their respective genes. These activations were prevented by antioxidants, suggesting that reactive oxygen species generated by CYP2E1 were responsible for the upregulation of these antioxidant genes. This upregulation may reflect an adaptive mechanism to remove CYP2E1-derived oxidants. Increases in Nrf2 protein and mRNA were observed in livers of chronic alcohol-fed mice or rats and of pyrzole-treated rats or mice, conditions known to elevate CYP2E1. E47 cells showed increased Nrf2 mRNA and protein expression compared with control HepG2 C34 cells. Upregulation of antioxidant genes in E47 cells is dependent on Nrf2 and is prevented by siRNA-Nrf2. Blocking Nrf2 by siRNA-Nrf2 decreases glutathione and increases reactive oxygen species and lipid peroxidation, resulting in decreased mitochondrial membrane potential and loss of cell viability of E47 cells, but not C34 cells. Nrf2 is activated and levels of Nrf2 protein and mRNA are increased when CYP2E1 is elevated. These results suggest that Nrf2 plays a key role in the adaptive response against increased oxidative stress caused by CYP2E1 in the HepG2 cells. However, it is not clear whether Nrf2 is protective against CYP2E1 toxicity in vivo as pyrazole which elevates CYP2E1 in wild-type mice did not elevate CYP2E1 in Nrf2 knockout mice, although pyrazole produced toxicity in the Nrf2 knockout mice.
AB - The transcription factor Nrf2 regulates the expression of important cytoprotective enzymes. Induction of CYP2E1 is one of the central pathways by which ethanol generates oxidative stress. CYP2E1 can be induced by ethanol and several low molecular mass chemicals such as pyrazole. This review discusses biochemical and toxicological effects of CYP2E1 and the effects of Nrf2 in modulating these actions of CYP2E1. Besides ethanol, CYP2E1 metabolizes and activates many other toxicologic important compounds. One approach to try to understand the basic effects and actions of CYP2E1 was to establish HepG2 cell lines that constitutively express human CYP2E1. Ethanol, polyunsaturated fatty acids and iron were toxic to the HepG2 cells, which express CYP2E1 (E47 cells) but not control C34HepG2 cells, which do not express CYP2E1. Toxicity was associated with enhanced oxidant stress and could be prevented by antioxidants and potentiated if glutathione was removed. The E47 cells had higher glutathione levels and a twofold increase in catalase, cytosolic and microsomal glutathione transferase, and heme oxygenase-1 than control HepG2 cells due to activation of their respective genes. These activations were prevented by antioxidants, suggesting that reactive oxygen species generated by CYP2E1 were responsible for the upregulation of these antioxidant genes. This upregulation may reflect an adaptive mechanism to remove CYP2E1-derived oxidants. Increases in Nrf2 protein and mRNA were observed in livers of chronic alcohol-fed mice or rats and of pyrzole-treated rats or mice, conditions known to elevate CYP2E1. E47 cells showed increased Nrf2 mRNA and protein expression compared with control HepG2 C34 cells. Upregulation of antioxidant genes in E47 cells is dependent on Nrf2 and is prevented by siRNA-Nrf2. Blocking Nrf2 by siRNA-Nrf2 decreases glutathione and increases reactive oxygen species and lipid peroxidation, resulting in decreased mitochondrial membrane potential and loss of cell viability of E47 cells, but not C34 cells. Nrf2 is activated and levels of Nrf2 protein and mRNA are increased when CYP2E1 is elevated. These results suggest that Nrf2 plays a key role in the adaptive response against increased oxidative stress caused by CYP2E1 in the HepG2 cells. However, it is not clear whether Nrf2 is protective against CYP2E1 toxicity in vivo as pyrazole which elevates CYP2E1 in wild-type mice did not elevate CYP2E1 in Nrf2 knockout mice, although pyrazole produced toxicity in the Nrf2 knockout mice.
KW - Antioxidants
KW - CYP2E1
KW - Ethanol hepatotoxicity
KW - HepG2 cells
KW - Nrf2
KW - Oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=70349389635&partnerID=8YFLogxK
U2 - 10.1517/17425250903143769
DO - 10.1517/17425250903143769
M3 - Review article
C2 - 19671018
AN - SCOPUS:70349389635
SN - 1742-5255
VL - 5
SP - 1223
EP - 1244
JO - Expert Opinion on Drug Metabolism and Toxicology
JF - Expert Opinion on Drug Metabolism and Toxicology
IS - 10
ER -