TY - JOUR
T1 - Novel Irrigated Temperature-Controlled Lattice Ablation Catheter for Ventricular Ablation
T2 - A Preclinical Multimodality Biophysical Characterization
AU - Shapira-Daniels, Ayelet
AU - Barkagan, Michael
AU - Yavin, Hagai
AU - Sroubek, Jakub
AU - Reddy, Vivek Y.
AU - Neuzil, Petr
AU - Anter, Elad
N1 - Funding Information:
This study was partially funded by a research grant from Affera, Inc.
Funding Information:
Drs Anter and Reddy have received research grants from Affera, Inc and hold stock options at this company. Drs Anter and Reddy also have conflicts of interest with other companies not directly related to this article; a comprehensive list is included in the Data Supplement. Dr Shapira-Daniels receives funding from National Institutes of Health T32 training grant. The other authors report no conflicts.
Publisher Copyright:
© 2019 Lippincott Williams and Wilkins. All rights reserved.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - Background: Ventricular tachycardia ablation is often limited by insufficient lesion creation. A novel radiofrequency catheter with an expandable lattice electrode has a larger surface area capable of delivering higher currents at a lower density to potentially increase lesion dimensions without overheating. Methods: This 8F bidirectional irrigated catheter (Sphere-9, Affera Inc) has a 9 mm spherical lattice tip ("lattice") with an effective surface area 10-fold larger than standard linear catheters. Nine surface thermocouples provide temperature feedback to a proprietary high-current generator operating in a temperature-controlled mode. Ex vivo phase: in 11 bovine hearts, unipolar ablation at 30, 60, and 120 seconds was compared between the lattice (Tmax60°C) and a standard linear irrigated-tip catheter (40 W) at contact force of 10 g. In 5 porcine hearts, bipolar ablation was compared between the catheters (Tmax60°C versus 40 W; 60 seconds). In vivo phase: in 9 swine, ventricular ablation at Tmax60°C versus 40 W was performed for 60 seconds. In addition, direct tissue temperature at 3- and 7-mm tissue depth was measured in a thigh muscle preparation. Results: Ex vivo: lattice produced deeper lesions at 30, 60, and 120 seconds application duration (6.7±1.3 versus 4.8±1.2 mm; 8.3±1.4 versus 5.4±0.8 mm; 10.0±1.6 versus 6.1±1.6 mm, respectively, P≤0.001 for all). Bipolar lesions were deeper (15.8±4.1 versus 10.5±1.4 mm, P<0.001) and more likely to be transmural (80% versus 0%, P=0.002). In vivo: lattice produced deeper lesions (10.5±1.4 versus 6.5±0.8 mm, P≤0.001). Tissue temperature at 7 mm was higher with the lattice (+15.1±2.4°C; P<0.001). The steam-pop occurrence was lower with the lattice (total: 4% versus 18%, P=0.02; in vivo 0% versus 14.2%, P=0.13). Conclusions: This novel radiofrequency system produces larger ventricular lesions compared with standard irrigated catheters and at a lower risk of tissue overheating. This may improve the efficacy of ventricular tachycardia ablation procedures while reducing the number of applications and procedural duration.
AB - Background: Ventricular tachycardia ablation is often limited by insufficient lesion creation. A novel radiofrequency catheter with an expandable lattice electrode has a larger surface area capable of delivering higher currents at a lower density to potentially increase lesion dimensions without overheating. Methods: This 8F bidirectional irrigated catheter (Sphere-9, Affera Inc) has a 9 mm spherical lattice tip ("lattice") with an effective surface area 10-fold larger than standard linear catheters. Nine surface thermocouples provide temperature feedback to a proprietary high-current generator operating in a temperature-controlled mode. Ex vivo phase: in 11 bovine hearts, unipolar ablation at 30, 60, and 120 seconds was compared between the lattice (Tmax60°C) and a standard linear irrigated-tip catheter (40 W) at contact force of 10 g. In 5 porcine hearts, bipolar ablation was compared between the catheters (Tmax60°C versus 40 W; 60 seconds). In vivo phase: in 9 swine, ventricular ablation at Tmax60°C versus 40 W was performed for 60 seconds. In addition, direct tissue temperature at 3- and 7-mm tissue depth was measured in a thigh muscle preparation. Results: Ex vivo: lattice produced deeper lesions at 30, 60, and 120 seconds application duration (6.7±1.3 versus 4.8±1.2 mm; 8.3±1.4 versus 5.4±0.8 mm; 10.0±1.6 versus 6.1±1.6 mm, respectively, P≤0.001 for all). Bipolar lesions were deeper (15.8±4.1 versus 10.5±1.4 mm, P<0.001) and more likely to be transmural (80% versus 0%, P=0.002). In vivo: lattice produced deeper lesions (10.5±1.4 versus 6.5±0.8 mm, P≤0.001). Tissue temperature at 7 mm was higher with the lattice (+15.1±2.4°C; P<0.001). The steam-pop occurrence was lower with the lattice (total: 4% versus 18%, P=0.02; in vivo 0% versus 14.2%, P=0.13). Conclusions: This novel radiofrequency system produces larger ventricular lesions compared with standard irrigated catheters and at a lower risk of tissue overheating. This may improve the efficacy of ventricular tachycardia ablation procedures while reducing the number of applications and procedural duration.
KW - ablation
KW - catheter
KW - electrodes
KW - heart ventricle
KW - radiofrequency
KW - temperature
UR - http://www.scopus.com/inward/record.url?scp=85074741707&partnerID=8YFLogxK
U2 - 10.1161/CIRCEP.119.007661
DO - 10.1161/CIRCEP.119.007661
M3 - Article
C2 - 31707809
AN - SCOPUS:85074741707
SN - 1941-3149
VL - 12
JO - Circulation: Arrhythmia and Electrophysiology
JF - Circulation: Arrhythmia and Electrophysiology
IS - 11
M1 - e007661
ER -