Novel correlates of protection against pandemic H1N1 influenza A virus infection

Sophia Ng, Raffael Nachbagauer, Angel Balmaseda, Daniel Stadlbauer, Sergio Ojeda, Mayuri Patel, Arvind Rajabhathor, Roger Lopez, Andrea F. Guglia, Nery Sanchez, Fatima Amanat, Lionel Gresh, Guillermina Kuan, Florian Krammer, Aubree Gordon

Research output: Contribution to journalArticlepeer-review

120 Scopus citations

Abstract

Influenza viruses remain a severe threat to human health, causing up to 650,000 deaths annually1,2. Seasonal influenza virus vaccines can prevent infection, but are rendered ineffective by antigenic drift. To provide improved protection from infection, novel influenza virus vaccines that target the conserved epitopes of influenza viruses, specifically those in the hemagglutinin stalk and neuraminidase, are currently being developed3. Antibodies against the hemagglutinin stalk confer protection in animal studies4–6. However, no data exist on natural infections in humans, and these antibodies do not show activity in the hemagglutination inhibition assay, the hemagglutination inhibition titer being the current correlate of protection against influenza virus infection7–9. While previous studies have investigated the protective effect of cellular immune responses and neuraminidase-inhibiting antibodies, additional serological correlates of protection from infection could aid the development of broadly protective or universal influenza virus vaccines10–13. To address this gap, we performed a household transmission study to identify alternative correlates of protection from infection and disease in naturally exposed individuals. Using this study, we determined 50% protective titers and levels for hemagglutination inhibition, full-length hemagglutinin, neuraminidase and hemagglutinin stalk-specific antibodies. Further, we found that hemagglutinin stalk antibodies independently correlated with protection from influenza virus infection.

Original languageEnglish
Pages (from-to)962-967
Number of pages6
JournalNature Medicine
Volume25
Issue number6
DOIs
StatePublished - 1 Jun 2019

Fingerprint

Dive into the research topics of 'Novel correlates of protection against pandemic H1N1 influenza A virus infection'. Together they form a unique fingerprint.

Cite this