TY - JOUR
T1 - New diagnostic tools for delineating iron status
AU - Ginzburg, Yelena Z.
N1 - Publisher Copyright:
© 2019 American Society of Hematology. All rights reserved.
PY - 2019/12/6
Y1 - 2019/12/6
N2 - Recent advances in our understanding of iron metabolism regulation and crosstalk with erythropoiesis have provided insight into the pathophysiology of multiple disease conditions. For instance, the peptide hormone hepcidin is central to the regulation of iron metabolism. Its effect on cellular iron concentration involves binding ferroportin, the main iron export protein, resulting in its internalization and degradation and leading to iron sequestration within ferroportin-expressing cells. Furthermore, hepcidin regulation by erythropoiesis is attributed in large part to a bone marrow-derived hormone erythroferrone. Erythroferrone-induced hepcidin suppression in diseases of expanded hematopoiesis results in iron overload. Conversely, diseases, such as iron refractory iron deficiency anemia and anemia of chronic inflammation, are characterized by aberrantly increased hepcidin, resulting in iron sequestration and decreased circulating iron and eventually leading to iron-restricted erythropoiesis. Lastly, because iron functions in concert with erythropoietin to promote erythroid precursor survival, proliferation, and differentiation, iron deficiency anemia is a consequence not only of decreased hemoglobin synthesis in each cell but also, a decrease in erythropoietin responsiveness in the bone marrow. How to translate this new information to the clinical setting has not been fully elucidated. The purpose of this manuscript is to summarize current standard tools for identifying iron deficiency in anemic patients; explore the tools and context for evaluating novel markers, such as hepcidin, erythroferrone, and markers of the iron restriction response; and assess available evidence for how their use could increase our understanding of health outcomes in clinically challenging cases.
AB - Recent advances in our understanding of iron metabolism regulation and crosstalk with erythropoiesis have provided insight into the pathophysiology of multiple disease conditions. For instance, the peptide hormone hepcidin is central to the regulation of iron metabolism. Its effect on cellular iron concentration involves binding ferroportin, the main iron export protein, resulting in its internalization and degradation and leading to iron sequestration within ferroportin-expressing cells. Furthermore, hepcidin regulation by erythropoiesis is attributed in large part to a bone marrow-derived hormone erythroferrone. Erythroferrone-induced hepcidin suppression in diseases of expanded hematopoiesis results in iron overload. Conversely, diseases, such as iron refractory iron deficiency anemia and anemia of chronic inflammation, are characterized by aberrantly increased hepcidin, resulting in iron sequestration and decreased circulating iron and eventually leading to iron-restricted erythropoiesis. Lastly, because iron functions in concert with erythropoietin to promote erythroid precursor survival, proliferation, and differentiation, iron deficiency anemia is a consequence not only of decreased hemoglobin synthesis in each cell but also, a decrease in erythropoietin responsiveness in the bone marrow. How to translate this new information to the clinical setting has not been fully elucidated. The purpose of this manuscript is to summarize current standard tools for identifying iron deficiency in anemic patients; explore the tools and context for evaluating novel markers, such as hepcidin, erythroferrone, and markers of the iron restriction response; and assess available evidence for how their use could increase our understanding of health outcomes in clinically challenging cases.
UR - http://www.scopus.com/inward/record.url?scp=85076238396&partnerID=8YFLogxK
U2 - 10.1182/hematology.2019000035
DO - 10.1182/hematology.2019000035
M3 - Article
C2 - 31808893
AN - SCOPUS:85076238396
SN - 1520-4391
VL - 2019
SP - 327
EP - 336
JO - Hematology. American Society of Hematology. Education Program
JF - Hematology. American Society of Hematology. Education Program
IS - 1
ER -