Abstract
Onsets of bacterial infections devastate the compromised immune system in AIDS patients. Damaged gut mucosa permits dissemination of bacterial toxins into deeper layers and hyper-activation of the immune system. We previously reported that the unfractionated supernatants of HIV-resistant CD4+ T cells impeded the NF-κB/DNA binding in macrophages induced by either HIV-1 or LPS. The active component of this soluble material was identified as X-DING-CD4 (extracellular DING from CD4 T cells). We hypothesized that the anti-inflammatory effect of the X-DING-CD4 protein might extend to non-immune cells, for example endothelial cells, undergoing persistent endotoxin stimulation in the course of advanced HIV disease. To test this proposition, we evaluated the efficiency of NF-κB and Ap-1 binding to the IL-8 promoter in LPS-activated endothelial cells and control human macrophages exposed to native X-DING-CD4 protein. We found a deficiency of NF-κB- but not AP-1-DNA binding in the systems where cells were treated with native soluble X-DING-CD4 protein. The X-DING-CD4-mediated inhibition of the IL-8 promoter also resulted in a reduction of the soluble IL-8 protein in endothelial cells and human macrophages infected with a subset of enteric bacteria frequently causing diarrhea in progressive HIV disease. Bacterial endotoxin did not induce the endogenous X-DING-CD4 mRNA activity in human macrophages and transformed CD4+T cells, indicating that the reduction of LPS-mediated IL-8 promoter activation was not related to de novo X-DING-CD4 protein synthesis, but depended on function of the exogenous X-DING-CD4 protein. This study provides evidence that the X-DING-CD4 protein might be developed as a novel biotherapeutic to control LPS-mediated inflammation in advanced HIV disease.
| Original language | English |
|---|---|
| Pages (from-to) | 571-579 |
| Number of pages | 9 |
| Journal | Innate Immunity |
| Volume | 18 |
| Issue number | 4 |
| DOIs | |
| State | Published - Aug 2012 |
| Externally published | Yes |
Keywords
- HIV-1
- Innate immunity
- X-DING-CD4
- endothelium
- human macrophages