TY - JOUR
T1 - Multicenter Quantification of Radiation Exposure and Associated Risks for Prostatic Artery Embolization in 1476 Patients
AU - Ayyagari, Raj
AU - Rahman, Saumik Z.
AU - Grizzard, Kevin
AU - Mustafa, Adel
AU - Staib, Lawrence H.
AU - Makkia, Rasha S.
AU - Bhatia, Shivank
AU - Bilhim, Tiago
AU - Carnevale, Francisco C.
AU - Davis, Clifford
AU - Fischman, Aaron
AU - Isaacson, Ari
AU - McClure, Timothy
AU - McWilliams, Justin
AU - Nutting, Charles
AU - Richardson, Andrew
AU - Salem, Riad
AU - Sapoval, Marc
AU - Yu, Hyeon
N1 - Publisher Copyright:
© 2024 Radiological Society of North America Inc.. All rights reserved.
PY - 2024/3
Y1 - 2024/3
N2 - Background: Prostatic artery embolization (PAE) is a safe, minimally invasive angiographic procedure that effectively treats benign prostatic hyperplasia; however, PAE-related patient radiation exposure and associated risks are not completely understood. Purpose: To quantify radiation dose and assess radiation-related adverse events in patients who underwent PAE at multiple centers. Materials and Methods: This retrospective study included patients undergoing PAE for any indication performed by experienced operators at 10 high-volume international centers from January 2014 to May 2021. Patient characteristics, procedural and radiation dose data, and radiation-related adverse events were collected. Procedural radiation effective doses were calculated by multiplying kerma-area product values by an established conversion factor for abdominopelvic fluoroscopy-guided procedures. Relationships between cumulative air kerma (CAK) or effective dose and patient body mass index (BMI), fluoroscopy time, or radiation field area were assessed with linear regression. Differences in radiation dose stemming from radiopaque prostheses or fluoroscopy unit type were assessed using two-sample t tests and Wilcoxon rank sum tests. Results: A total of 1476 patients (mean age, 69.9 years ± 9.0 [SD]) were included, of whom 1345 (91.1%) and 131 (8.9%) underwent the procedure with fixed interventional or mobile fluoroscopy units, respectively. Median procedure effective dose was 17.8 mSv for fixed interventional units and 12.3 mSv for mobile units. CAK and effective dose both correlated positively with BMI (R2 = 0.15 and 0.17; P < .001) and fluoroscopy time (R2 = 0.16 and 0.08; P < .001). No radiation-related 90-day adverse events were reported. Patients with radiopaque implants versus those without implants had higher median CAK (1452 mGy [range, 900-2685 mGy] vs 1177 mGy [range, 700-1959 mGy], respectively; P = .01). Median effective dose was lower for mobile than for fixed interventional systems (12.3 mSv [range, 8.5-22.0 mSv] vs 20.4 mSv [range, 13.8-30.6 mSv], respectively; P < .001). Conclusion: Patients who underwent PAE performed with fixed interventional or mobile fluoroscopy units were exposed to a median effective radiation dose of 17.8 mSv or 12.3 mSv, respectively. No radiation-related adverse events at 90 days were reported.
AB - Background: Prostatic artery embolization (PAE) is a safe, minimally invasive angiographic procedure that effectively treats benign prostatic hyperplasia; however, PAE-related patient radiation exposure and associated risks are not completely understood. Purpose: To quantify radiation dose and assess radiation-related adverse events in patients who underwent PAE at multiple centers. Materials and Methods: This retrospective study included patients undergoing PAE for any indication performed by experienced operators at 10 high-volume international centers from January 2014 to May 2021. Patient characteristics, procedural and radiation dose data, and radiation-related adverse events were collected. Procedural radiation effective doses were calculated by multiplying kerma-area product values by an established conversion factor for abdominopelvic fluoroscopy-guided procedures. Relationships between cumulative air kerma (CAK) or effective dose and patient body mass index (BMI), fluoroscopy time, or radiation field area were assessed with linear regression. Differences in radiation dose stemming from radiopaque prostheses or fluoroscopy unit type were assessed using two-sample t tests and Wilcoxon rank sum tests. Results: A total of 1476 patients (mean age, 69.9 years ± 9.0 [SD]) were included, of whom 1345 (91.1%) and 131 (8.9%) underwent the procedure with fixed interventional or mobile fluoroscopy units, respectively. Median procedure effective dose was 17.8 mSv for fixed interventional units and 12.3 mSv for mobile units. CAK and effective dose both correlated positively with BMI (R2 = 0.15 and 0.17; P < .001) and fluoroscopy time (R2 = 0.16 and 0.08; P < .001). No radiation-related 90-day adverse events were reported. Patients with radiopaque implants versus those without implants had higher median CAK (1452 mGy [range, 900-2685 mGy] vs 1177 mGy [range, 700-1959 mGy], respectively; P = .01). Median effective dose was lower for mobile than for fixed interventional systems (12.3 mSv [range, 8.5-22.0 mSv] vs 20.4 mSv [range, 13.8-30.6 mSv], respectively; P < .001). Conclusion: Patients who underwent PAE performed with fixed interventional or mobile fluoroscopy units were exposed to a median effective radiation dose of 17.8 mSv or 12.3 mSv, respectively. No radiation-related adverse events at 90 days were reported.
UR - http://www.scopus.com/inward/record.url?scp=85186846393&partnerID=8YFLogxK
U2 - 10.1148/radiol.231877
DO - 10.1148/radiol.231877
M3 - Article
C2 - 38441098
AN - SCOPUS:85186846393
SN - 0033-8419
VL - 310
JO - Radiology
JF - Radiology
IS - 3
M1 - e231877
ER -