TY - JOUR
T1 - Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates
AU - Uddin, Monica
AU - Opazo, Juan C.
AU - Wildman, Derek E.
AU - Sherwood, Chet C.
AU - Hof, Patrick R.
AU - Goodman, Morris
AU - Grossman, Lawrence I.
N1 - Funding Information:
This work was supported by NIH grant RO1 DK56927, NSF grants BCS0318375, BCS0550209 BCS0515484, and BCS0549117, the Wenner-Gren Foundation for Anthropological Research, and the James S. McDon-nell Foundation (22002078). The authors thank Ms. Jennifer Leith and Cheryl D. Stimpson for laboratory assistance, Dr. Maik Hüttemann for useful discussions and Dr. A. Popratiloff for assistance with confocal microscope imaging. For primate samples we thank Dr. Caro-Beth Stewart (SUNY, Albany), the Center for Reproduction of Endangered Species at the San Diego Zoological Society, Duke University Primate Center, Southwest National Primate Research Center, and Coriell Institute for Medical Research. The brain samples used in this study were loaned by the Great Ape Aging Project (USPHS/NIH grant AG14308, "A Comparative Neurobiology of Aging Resource," J. Erwin, PI), the Foundation for Comparative and Conservation Biology, and the Northwestern University Alzheimer's Disease Center Brain Bank (NADC grant P30 AG13854).
PY - 2008
Y1 - 2008
N2 - Background. Many electron transport chain (ETC) genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains. Results. In a dataset comprising 29 vertebrate taxa, including representatives from all major groups of primates, there is nearly 100% conservation of the COX5A amino acid sequence among extant, non-anthropoid placental mammals. The most recent common ancestor of these species lived about 100 million years (MY) ago. In contrast, anthropoid primates show markedly elevated rates of nonsynonymous evolution. In particular, branch site tests identify five positively selected codons in anthropoids, and ancestral reconstructions infer that substitutions in these codons occurred predominantly on stem lineages (anthropoid, ape and New World monkey) and on the human terminal branch. Examination of catarrhine brain samples by immunohistochemistry characterizes for the first time COX5A protein distribution in the primate neocortex, and suggests that the protein is most abundant in the mitochondria of large-size projection neurons. Real time quantitative PCR supports previous microarray results showing COX5A is expressed in cerebral cortical tissue at a higher level in human than in chimpanzee or gorilla. Conclusion. Taken together, these results suggest that both protein structural and gene regulatory changes contributed to COX5A evolution during humankind's ancestry. Furthermore, these findings are consistent with the hypothesis that adaptations in ETC genes contributed to the emergence of the energetically expensive anthropoid neocortex.
AB - Background. Many electron transport chain (ETC) genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains. Results. In a dataset comprising 29 vertebrate taxa, including representatives from all major groups of primates, there is nearly 100% conservation of the COX5A amino acid sequence among extant, non-anthropoid placental mammals. The most recent common ancestor of these species lived about 100 million years (MY) ago. In contrast, anthropoid primates show markedly elevated rates of nonsynonymous evolution. In particular, branch site tests identify five positively selected codons in anthropoids, and ancestral reconstructions infer that substitutions in these codons occurred predominantly on stem lineages (anthropoid, ape and New World monkey) and on the human terminal branch. Examination of catarrhine brain samples by immunohistochemistry characterizes for the first time COX5A protein distribution in the primate neocortex, and suggests that the protein is most abundant in the mitochondria of large-size projection neurons. Real time quantitative PCR supports previous microarray results showing COX5A is expressed in cerebral cortical tissue at a higher level in human than in chimpanzee or gorilla. Conclusion. Taken together, these results suggest that both protein structural and gene regulatory changes contributed to COX5A evolution during humankind's ancestry. Furthermore, these findings are consistent with the hypothesis that adaptations in ETC genes contributed to the emergence of the energetically expensive anthropoid neocortex.
UR - http://www.scopus.com/inward/record.url?scp=39049125151&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-8-8
DO - 10.1186/1471-2148-8-8
M3 - Article
C2 - 18197981
AN - SCOPUS:39049125151
SN - 1471-2148
VL - 8
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 8
ER -