Abstract
The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.
| Original language | English |
|---|---|
| Pages (from-to) | 1058-1064 |
| Number of pages | 7 |
| Journal | Nature Structural and Molecular Biology |
| Volume | 17 |
| Issue number | 9 |
| DOIs | |
| State | Published - Sep 2010 |
| Externally published | Yes |