Modes and models of GABAA receptor gating

Gareth M.C. Lema, Anthony Auerbach

Research output: Contribution to journalArticlepeer-review

50 Scopus citations


Upon activation by agonist, the type A γaminobutyric acid receptor (GABAR) 'gates' alollowing chloride ions to permeate membranes and produce fast inhibition of neurons. There is no consensus kinetic model for the GABAR gating mechanism. We expressed human α1β1γ2S GABARs in HEK 293 cells and recorded single channel currents in the cell-attached configuration using various GABA concentrations (50-5000 μM). Closed and open events occurred individually and in clusters that had at least three different modes that were distinguishable by open probability (PO): High (PO = 0.73), Mid (PO = 0.50), and Low (PO = 0.21).We used a critical time to isolate shorter bursts of openings and to thus eliminate long-lived, desensitized events. Bursts from all three modes contained three closed and three open components. We employed maximum likelihood] fitting, autocorrelation analysis and macroscopic current simulation to distinguish kinetic schemes. The 'core' gating scheme for most models contained two closed states that preceded an open state (C1 ⇌ C2 ⇌ O1). The two best-fitting models had a third closed state connected to C1 and a second open state (O2) connected to C2. The third open state, whose occupancy varied greatly between modes, could be connected either to O2 or C2. We estimated rate constants for two identical, independent GABA binding steps by globally fitting data across GABA concentrations ranging from 50 to 1000 μM. For the most highly ranked model the binding rate constants were: k+ = 3 μM-1s-1 and k- = 272 s-1 (KD = 91 μM).

Original languageEnglish
Pages (from-to)183-200
Number of pages18
JournalJournal of Physiology
Issue number1
StatePublished - Apr 2006
Externally publishedYes


Dive into the research topics of 'Modes and models of GABAA receptor gating'. Together they form a unique fingerprint.

Cite this