Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma

Anna Shteinfer-Kuzmine, Tasleem Arif, Yakov Krelin, Shambhoo Sharan Tripathi, Avijit Paul, Varda Shoshan-Barmatz

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Glioblastoma multiforme (GBM), a primary brain malignancy characterized by high morbidity, invasiveness, proliferation, relapse and mortality, is resistant to chemo- and radiotherapies and lacks effective treatment. GBM tumors undergo metabolic reprograming and develop anti-apoptotic defenses. We targeted GBM with a peptide derived from the mitochondrial protein voltage-dependent anion channel 1 (VDAC1), a key component of cell energy, metabolism and apoptosis regulation. VDAC1-based cell-penetrating peptides perturbed cell energy and metabolic homeostasis and induced apoptosis in several GBM and GBM-derived stem cell lines. We found that the peptides simultaneously attacked several oncogenic properties of human U-87MG cells introduced into sub-cutaneous xenograft mouse model, inhibiting tumor growth, invasion, and cellular metabolism, stemness and inducing apoptosis. Peptide-treated tumors showed decreased expression of all tested metabolism-related enzymes and transporters, and elevated levels of apoptotic proteins, such as p53, cytochrome c and caspases. Retro-Tf-D-LP4, containing the human transferrin receptor (TfR)-recognition sequence, crossed the blood-brain barrier (BBB) via the TfR that is highly expressed in the BBB to strongly inhibit tumor growth in an intracranial xenograft mouse model. In summary, the VDAC1-based peptides tested here offer a potentially affordable and innovative new conceptual therapeutic paradigm that might overcome GBM stemness and invasiveness and reduce relapse rates.

Original languageEnglish
Pages (from-to)31329-31346
Number of pages18
JournalOncotarget
Volume8
Issue number19
DOIs
StatePublished - 2017
Externally publishedYes

Keywords

  • Apoptosis
  • Glioblastoma
  • Mitochondria
  • Peptides
  • VDAC1

Fingerprint

Dive into the research topics of 'Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma'. Together they form a unique fingerprint.

Cite this