miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis

Bobby Yanagawa, Fina Lovren, Yi Pan, Vinay Garg, Adrian Quan, Gilbert Tang, Krishna K. Singh, Praphulla C. Shukla, Nikhil P. Kalra, Mark D. Peterson, Subodh Verma

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Objective: Bone morphogenetic protein-2 (BMP-2) is a major regulator of aortic valve calcification. MicroRNAs (miRNAs) are essential post-transcriptional modulators of gene expression and miRNA-141 is a known repressor of BMP-2-mediated osteogenesis. We hypothesized that miRNA-141 is a key regulator of aortic valve calcification. Methods: Porcine valvular interstitial cells were isolated, transfected with miRNA-141 or control, and stimulated with transforming growth factor-β. The BMP-2, extracellular signal-regulated kinase 1/2, and runt-related transcription factor 2 levels were determined by immunoblotting and reverse transcriptase polymerase chain reaction. To determine the role of miRNA-141 in bicuspid aortic valve disease, human bicuspid (n = 19) and tricuspid (n = 17) aortic valve leaflets obtained intraoperatively were submitted for GenoExplorer human microRNA array, immunoblotting, and histologic and immunohistochemical analyses. Results: Stimulation of porcine aortic valvular interstitial cells with transforming growth factor-β induced morphologic alterations consistent with myofibroblastic transformation, BMP-2 signaling, and calcification. Transfection with miRNA-141 restored transforming growth factor-β-induced valvular interstitial cell activation, BMP-2 signaling, and alkaline phosphatase activity (3.55 ± 0.18 vs 4.01 ± 0.21, P < .05), suggesting upstream regulation by miRNA-141. miRNA microarray demonstrated differential expression of 35 of 1583 miRNA sequences in the bicuspid versus tricuspid aortic valve leaflets, with a 14.5-fold decrease in miRNA-141 in the bicuspid versus tricuspid leaflets (P < .05). This was associated with significantly increased BMP-2 protein expression in bicuspid aortic valve compared with the tricuspid aortic valve leaflets (P < .001). Conclusions: We report a completely novel role of miRNA-141 as a regulator of BMP-2-dependent aortic valvular calcification and demonstrate marked attenuation of miRNA-141 expression in patients with bicuspid aortic valve-associated aortic stenosis. Therapeutic targeting of miRNA-141 could serve as a novel strategy to limit progressive calcification in aortic stenosis.

Original languageEnglish
Pages (from-to)256-262.e2
JournalJournal of Thoracic and Cardiovascular Surgery
Volume144
Issue number1
DOIs
StatePublished - Jul 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis'. Together they form a unique fingerprint.

Cite this