TY - JOUR
T1 - MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s disease pathogenesis
AU - Cao, Jiqing
AU - Huang, Min
AU - Guo, Lei
AU - Zhu, Li
AU - Hou, Jianwei
AU - Zhang, Larry
AU - Pero, Adriana
AU - Ng, Sabrina
AU - El Gaamouch, Farida
AU - Elder, Gregory
AU - Sano, Mary
AU - Goate, Alison
AU - Tcw, Julia
AU - Haroutunian, Vahram
AU - Zhang, Bin
AU - Cai, Dongming
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2021/9
Y1 - 2021/9
N2 - Our recent findings link the apolipoprotein E4 (ApoE4)-specific changes in brain phosphoinositol biphosphate (PIP2) homeostasis to the susceptibility of developing Alzheimer’s Disease (AD). In the present study, we have identified miR-195 as a top micro-RNA candidate involved in the ApoE/PIP2 pathway using miRNA profiles in human ROSMAP datasets and mouse microarray studies. Further validation studies have demonstrated that levels of miR-195 are significantly lower in human brain tissue of ApoE4+/− patients with clinical diagnosis of mild cognitive impairment (MCI) or early AD when compared to ApoE4−/− subjects. In addition, brain miR-195 levels are reduced along with disease progression from normal aging to early AD, and cerebrospinal fluid (CSF) miR-195 levels of MCI subjects are positively correlated with cognitive performances as measured by mini-mental status examination (MMSE) and negatively correlated with CSF tau levels, suggesting the involvement of miR-195 in early development of AD with a potential impact on cognition. Similar differences in miR-195 levels are seen in ApoE4+/+ mouse hippocampal brain tissue and cultured neurons when compared to ApoE3+/+ counterparts. Over-expressing miR-195 reduces expression levels of its top predicted target synaptojanin 1 (synj1), a brain PIP2-degrading enzyme. Furthermore, elevating miR-195 ameliorates cognitive deficits, amyloid plaque burden, and tau hyper-phosphorylation in ApoE4+/+ mice. In addition, elevating miR-195 rescues AD-related lysosomal defects in inducible pluripotent stem cells (iPSCs)-derived brain cells of ApoE4+/+ AD subjects while inhibiting miR-195 exacerbates these phenotypes. Together, our data uncover a novel regulatory mechanism of miR-195 targeted at ApoE4-associated brain PIP2 dyshomeostasis, cognitive deficits, and AD pathology.
AB - Our recent findings link the apolipoprotein E4 (ApoE4)-specific changes in brain phosphoinositol biphosphate (PIP2) homeostasis to the susceptibility of developing Alzheimer’s Disease (AD). In the present study, we have identified miR-195 as a top micro-RNA candidate involved in the ApoE/PIP2 pathway using miRNA profiles in human ROSMAP datasets and mouse microarray studies. Further validation studies have demonstrated that levels of miR-195 are significantly lower in human brain tissue of ApoE4+/− patients with clinical diagnosis of mild cognitive impairment (MCI) or early AD when compared to ApoE4−/− subjects. In addition, brain miR-195 levels are reduced along with disease progression from normal aging to early AD, and cerebrospinal fluid (CSF) miR-195 levels of MCI subjects are positively correlated with cognitive performances as measured by mini-mental status examination (MMSE) and negatively correlated with CSF tau levels, suggesting the involvement of miR-195 in early development of AD with a potential impact on cognition. Similar differences in miR-195 levels are seen in ApoE4+/+ mouse hippocampal brain tissue and cultured neurons when compared to ApoE3+/+ counterparts. Over-expressing miR-195 reduces expression levels of its top predicted target synaptojanin 1 (synj1), a brain PIP2-degrading enzyme. Furthermore, elevating miR-195 ameliorates cognitive deficits, amyloid plaque burden, and tau hyper-phosphorylation in ApoE4+/+ mice. In addition, elevating miR-195 rescues AD-related lysosomal defects in inducible pluripotent stem cells (iPSCs)-derived brain cells of ApoE4+/+ AD subjects while inhibiting miR-195 exacerbates these phenotypes. Together, our data uncover a novel regulatory mechanism of miR-195 targeted at ApoE4-associated brain PIP2 dyshomeostasis, cognitive deficits, and AD pathology.
UR - http://www.scopus.com/inward/record.url?scp=85087625030&partnerID=8YFLogxK
U2 - 10.1038/s41380-020-0824-3
DO - 10.1038/s41380-020-0824-3
M3 - Article
C2 - 32632205
AN - SCOPUS:85087625030
SN - 1359-4184
VL - 26
SP - 4687
EP - 4701
JO - Molecular Psychiatry
JF - Molecular Psychiatry
IS - 9
ER -