Abstract
The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL cholesterol (LDL-C). Whereas the transcriptional regulation of LDLR is well characterized, the post-transcriptional mechanisms that govern LDLR expression are just beginning to emerge. Here we develop a high-throughput genome-wide screening assay to systematically identify microRNAs (miRNAs) that regulate LDLR activity in human hepatic cells. From this screen we identified and characterized miR-148a as a negative regulator of LDLR expression and activity and defined a sterol regulatory element-binding protein 1 (SREBP1)-mediated pathway through which miR-148a regulates LDL-C uptake. In mice, inhibition of miR-148a increased hepatic LDLR expression and decreased plasma LDL-C. Moreover, we found that miR-148a regulates hepatic expression of ATP-binding cassette, subfamily A, member 1 (ABCA1) and circulating high-density lipoprotein cholesterol (HDL-C) levels in vivo. These studies uncover a role for miR-148a as a key regulator of hepatic LDL-C clearance through direct modulation of LDLR expression and demonstrate the therapeutic potential of inhibiting miR-148a to ameliorate an elevated LDL-C/HDL-C ratio, a prominent risk factor for cardiovascular disease.
Original language | English |
---|---|
Pages (from-to) | 1280-1288 |
Number of pages | 9 |
Journal | Nature Medicine |
Volume | 21 |
Issue number | 11 |
DOIs | |
State | Published - 1 Nov 2015 |
Externally published | Yes |