TY - JOUR
T1 - Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2
AU - Zhou, Xiang
AU - Wahane, Shalaka
AU - Friedl, Marie Sophie
AU - Kluge, Michael
AU - Friedel, Caroline C.
AU - Avrampou, Kleopatra
AU - Zachariou, Venetia
AU - Guo, Lei
AU - Zhang, Bin
AU - He, Xijing
AU - Friedel, Roland H.
AU - Zou, Hongyan
N1 - Funding Information:
We thank all members of the Zou and Friedel laboratories for constructive comments. The work was supported by grants from the following organizations: the NIH/NINDS (R01/R56 NS073596), the Craig H. Neilsen Foundation (#476516) and the New York State Spinal Cord Injury Research Board (DOH01-C32242GG, DOH01-C33268GG) to H.Z.; the NIH/NINDS (R01 NS092735) to R.H.F.; the NIH/NINDS (NS086444, NS093537) and the NIH/NIA (U01 AG046170) to B.Z.; and the National Institute on Drug Abuse (P01 DA08227) to V.Z. Additional fellowship support was provided by the Chinese Scholarship Council to X.Z. and the New York State Spinal Cord Injury Research Board (DOH01-C32634GG) to S.W. M.-S.F., M.K. and C.C.F. were supported by grants FR2938/7-1 and CRC 1123 (Z2) from the Deutsche Forschungsgemeinschaft (DFG) to C.C.F. We would also like to thank Z. Yue and Y. Zhang for assisting in the rotarod tests, and Mount Sinai Microscopy CoRE for assisting in the STED imaging.
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Tissue repair after spinal cord injury requires the mobilization of immune and glial cells to form a protective barrier that seals the wound and facilitates debris clearing, inflammatory containment and matrix compaction. This process involves corralling, wherein phagocytic immune cells become confined to the necrotic core, which is surrounded by an astrocytic border. Here we elucidate a temporally distinct gene signature in injury-activated microglia and macrophages (IAMs) that engages axon guidance pathways. Plexin-B2 is upregulated in IAMs and is required for motor sensory recovery after spinal cord injury. Plexin-B2 deletion in myeloid cells impairs corralling, leading to diffuse tissue damage, inflammatory spillover and hampered axon regeneration. Corralling begins early and requires Plexin-B2 in both microglia and macrophages. Mechanistically, Plexin-B2 promotes microglia motility, steers IAMs away from colliding cells and facilitates matrix compaction. Our data therefore establish Plexin-B2 as an important link that integrates biochemical cues and physical interactions of IAMs with the injury microenvironment during wound healing.
AB - Tissue repair after spinal cord injury requires the mobilization of immune and glial cells to form a protective barrier that seals the wound and facilitates debris clearing, inflammatory containment and matrix compaction. This process involves corralling, wherein phagocytic immune cells become confined to the necrotic core, which is surrounded by an astrocytic border. Here we elucidate a temporally distinct gene signature in injury-activated microglia and macrophages (IAMs) that engages axon guidance pathways. Plexin-B2 is upregulated in IAMs and is required for motor sensory recovery after spinal cord injury. Plexin-B2 deletion in myeloid cells impairs corralling, leading to diffuse tissue damage, inflammatory spillover and hampered axon regeneration. Corralling begins early and requires Plexin-B2 in both microglia and macrophages. Mechanistically, Plexin-B2 promotes microglia motility, steers IAMs away from colliding cells and facilitates matrix compaction. Our data therefore establish Plexin-B2 as an important link that integrates biochemical cues and physical interactions of IAMs with the injury microenvironment during wound healing.
UR - http://www.scopus.com/inward/record.url?scp=85081361459&partnerID=8YFLogxK
U2 - 10.1038/s41593-020-0597-7
DO - 10.1038/s41593-020-0597-7
M3 - Article
C2 - 32112058
AN - SCOPUS:85081361459
VL - 23
SP - 337
EP - 350
JO - Nature Neuroscience
JF - Nature Neuroscience
SN - 1097-6256
IS - 3
ER -