TY - JOUR
T1 - Mer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy
AU - Cackowski, Frank C.
AU - Eber, Matthew R.
AU - Rhee, James
AU - Decker, Ann M.
AU - Yumoto, Kenji
AU - Berry, Janice E.
AU - Lee, Eunsohl
AU - Shiozawa, Yusuke
AU - Jung, Younghun
AU - Aguirre-Ghiso, Julio A.
AU - Taichman, Russell S.
N1 - Publisher Copyright:
© 2016 Wiley Periodicals, Inc.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Many prostate cancer (PCa) recurrences are thought to be due to reactivation of disseminated tumor cells (DTCs). We previously found a role of the TAM family of receptor tyrosine kinases TYRO3, AXL, and MERTK in PCa dormancy regulation. However, the mechanism and contributions of the individual TAM receptors is largely unknown. Knockdown of MERTK, but not AXL or TYRO3 by shRNA in PCa cells induced a decreased ratio of P-Erk1/2 to P-p38, increased expression of p27, NR2F1, SOX2, and NANOG, induced higher levels of histone H3K9me3 and H3K27me3, and induced a G1/G0 arrest, all of which are associated with dormancy. Similar effects were also observed with siRNA. Most importantly, knockdown of MERTK in PCa cells increased metastasis free survival in an intra-cardiac injection mouse xenograft model. MERTK knockdown also failed to inhibit PCa growth in vitro and subcutaneous growth in vivo, which suggests that MERTK has specificity for dormancy regulation or requires a signal from the PCa microenvironment. The effects of MERTK on the cell cycle and histone methylation were reversed by p38 inhibitor SB203580, which indicates the importance of MAP kinases for MERTK dormancy regulation. Overall, this study shows that MERTK stimulates PCa dormancy escape through a MAP kinase dependent mechanism, also involving p27, pluripotency transcription factors, and histone methylation. J. Cell. Biochem. 118: 891–902, 2017.
AB - Many prostate cancer (PCa) recurrences are thought to be due to reactivation of disseminated tumor cells (DTCs). We previously found a role of the TAM family of receptor tyrosine kinases TYRO3, AXL, and MERTK in PCa dormancy regulation. However, the mechanism and contributions of the individual TAM receptors is largely unknown. Knockdown of MERTK, but not AXL or TYRO3 by shRNA in PCa cells induced a decreased ratio of P-Erk1/2 to P-p38, increased expression of p27, NR2F1, SOX2, and NANOG, induced higher levels of histone H3K9me3 and H3K27me3, and induced a G1/G0 arrest, all of which are associated with dormancy. Similar effects were also observed with siRNA. Most importantly, knockdown of MERTK in PCa cells increased metastasis free survival in an intra-cardiac injection mouse xenograft model. MERTK knockdown also failed to inhibit PCa growth in vitro and subcutaneous growth in vivo, which suggests that MERTK has specificity for dormancy regulation or requires a signal from the PCa microenvironment. The effects of MERTK on the cell cycle and histone methylation were reversed by p38 inhibitor SB203580, which indicates the importance of MAP kinases for MERTK dormancy regulation. Overall, this study shows that MERTK stimulates PCa dormancy escape through a MAP kinase dependent mechanism, also involving p27, pluripotency transcription factors, and histone methylation. J. Cell. Biochem. 118: 891–902, 2017.
KW - AXL
KW - DISSEMINATED TUMOR CELL
KW - DORMANCY
KW - MERTK
KW - PROSTATE CANCER
KW - TYRO3
UR - http://www.scopus.com/inward/record.url?scp=85000948313&partnerID=8YFLogxK
U2 - 10.1002/jcb.25768
DO - 10.1002/jcb.25768
M3 - Article
C2 - 27753136
AN - SCOPUS:85000948313
SN - 0730-2312
VL - 118
SP - 891
EP - 902
JO - Journal of Cellular Biochemistry
JF - Journal of Cellular Biochemistry
IS - 4
ER -