MEKK1/JNK signaling stabilizes and activates p53

Serge Y. Fuchs, Victor Adler, Matthew R. Pincus, Ze'ev Ronai

Research output: Contribution to journalArticlepeer-review

453 Scopus citations

Abstract

Activation of the tumor suppressor p53 by stress and damage stimuli often correlates with induction of stress kinases, Jun-NH2 kinase (JNK). As JNK association with p53 plays an important role in p53 stability, in the present study we have elucidated the relationship between the JNK-signaling pathway and p53 stability and activity. Expression of a constitutively active form of JNKK upstream kinase, mitogen-activated protein kinase kinase kinase (ΔMEKK1), increased the level of the exogenously transfected form of p53 in p53 null (10.1) cells as well as of endogenous p53 in MCF7 breast cancer cells. Increased p53 level by forced expression of AMEKK1 coincided with a decrease in p53 ubiquitination in vivo and with prolonged p53 half-life. Computerized modeling of the JNK-binding site (amino acids 97-116; p7 region) enabled us to design mutations of exposed residues within this region. Respective mutations (p53101-5-8) and deletion (p(53Δp7)) forms of p53 did not exhibit the same increase in p53 levels upon ΔMEKK1 expression. In vitro phosphorylation of p53 by JNK abolished Mdm2 binding and targeting of p53 ubiquitination. Similarly, ΔMEKK1 expression increased p53 phosphorylation by immunopurified JNK and dissociated p53Mdm2 complexes. Transcriptional activity of p53, as measured via mdm2 promoter-driven luciferase, exhibited a substantial increase in ΔMEKK1-expressing cells. Cotransfection of p53 and ΔMEKK1 into p53 null cells potentiated p53- dependent apoptosis, suggesting that MEKK1 effectors contribute to the ability of p53 to mediate programmed cell death. Our results point to the role of MEKK1-JNK signaling in p53 stability, transcriptional activities, and apoptotic capacity as part of the cellular response to stress.

Original languageEnglish
Pages (from-to)10541-10546
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume95
Issue number18
DOIs
StatePublished - 1 Sep 1998

Fingerprint

Dive into the research topics of 'MEKK1/JNK signaling stabilizes and activates p53'. Together they form a unique fingerprint.

Cite this