TY - JOUR
T1 - Mechanoregulation of BK channel activity in the mammalian cortical collecting duct
T2 - Role of protein kinases A and C
AU - Liu, Wen
AU - Wei, Yuan
AU - Sun, Peng
AU - Wang, Wen Hui
AU - Kleyman, Thomas R.
AU - Satlin, Lisa M.
PY - 2009/10
Y1 - 2009/10
N2 - Flow-stimulated net K secretion (JK) in the cortical collecting duct (CCD) is mediated by an iberiotoxin (IBX)-sensitive BK channel, and requires an increase in intracellular Ca2+ concentration ([Ca2+]i). The α-subunit of the reconstituted BK channel is phosphorylated by PKA and PKC. To test whether the BK channel in the native CCD is regulated by these kinases, JK and net Na absorption (JNa) were measured at slow (∼1) and fast (∼5 nl·min-1 · mm -1) flow rates in rabbit CCDs microperfused in the presence of mPKI, an inhibitor of PKA; calphostin C, which inhibits diacylglycerol binding proteins, including PKC; or bisindolylmaleimide (BIM) and Gö6976, inhibitors of classic and novel PKC isoforms, added to luminal (L) and/or basolateral (B) solutions. L but not B mPKI increased JK in CCDs perfused at a slow flow rate; a subsequent increase in flow rate augmented JK modestly. B mPKI alone or with L inhibitor abolished flow stimulation of JK. Similarly, L calphostin C increased JK in CCDs perfused at slow flow rates, as did calphostin C in both L and B solutions. The observation that IBX inhibited the L mPKI- and calphostin C-mediated increases in JK at slow flow rates implicated the BK channel in this K flux, a notion suggested by patch-clamp analysis of principal cells. The kinase inhibited by calphostin C was not PKC as L and/or B BIM and Gö6976 failed to enhance JK at the slow flow rate. However, addition of these PKC inhibitors to the B solution alone or with L inhibitor blocked flow stimulation of JK. Interpretation of these results in light of the effects of these inhibitors on the flow-induced elevation of [Ca2+]i suggests that the principal cell apical BK channel is tonically inhibited by PKA and that flow stimulation of JK in the CCD is PKA and PKC dependent. The specific targets of the kinases remain to be identified.
AB - Flow-stimulated net K secretion (JK) in the cortical collecting duct (CCD) is mediated by an iberiotoxin (IBX)-sensitive BK channel, and requires an increase in intracellular Ca2+ concentration ([Ca2+]i). The α-subunit of the reconstituted BK channel is phosphorylated by PKA and PKC. To test whether the BK channel in the native CCD is regulated by these kinases, JK and net Na absorption (JNa) were measured at slow (∼1) and fast (∼5 nl·min-1 · mm -1) flow rates in rabbit CCDs microperfused in the presence of mPKI, an inhibitor of PKA; calphostin C, which inhibits diacylglycerol binding proteins, including PKC; or bisindolylmaleimide (BIM) and Gö6976, inhibitors of classic and novel PKC isoforms, added to luminal (L) and/or basolateral (B) solutions. L but not B mPKI increased JK in CCDs perfused at a slow flow rate; a subsequent increase in flow rate augmented JK modestly. B mPKI alone or with L inhibitor abolished flow stimulation of JK. Similarly, L calphostin C increased JK in CCDs perfused at slow flow rates, as did calphostin C in both L and B solutions. The observation that IBX inhibited the L mPKI- and calphostin C-mediated increases in JK at slow flow rates implicated the BK channel in this K flux, a notion suggested by patch-clamp analysis of principal cells. The kinase inhibited by calphostin C was not PKC as L and/or B BIM and Gö6976 failed to enhance JK at the slow flow rate. However, addition of these PKC inhibitors to the B solution alone or with L inhibitor blocked flow stimulation of JK. Interpretation of these results in light of the effects of these inhibitors on the flow-induced elevation of [Ca2+]i suggests that the principal cell apical BK channel is tonically inhibited by PKA and that flow stimulation of JK in the CCD is PKA and PKC dependent. The specific targets of the kinases remain to be identified.
KW - In vitro microperfusion
KW - K secretion
KW - Laminar shear
KW - Mechanoregulation
KW - ROMK
UR - http://www.scopus.com/inward/record.url?scp=70349648816&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.90685.2008
DO - 10.1152/ajprenal.90685.2008
M3 - Article
C2 - 19656909
AN - SCOPUS:70349648816
SN - 1931-857X
VL - 297
SP - F904-F915
JO - American Journal of Physiology - Renal Physiology
JF - American Journal of Physiology - Renal Physiology
IS - 4
ER -