Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content

Arthur J. Michalek, Mark R. Buckley, Lawrence J. Bonassar, Itai Cohen, James C. Iatridis

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

Shear strain has been implicated as an initiator of intervertebral disc anulus failure, however a clear, multi-scale picture of how shear strain affects the tissue microstructure has been lacking. The purposes of this study were to measure microscale deformations in anulus tissue under dynamic shear in two orie ntations, and to determine the role of elastin in regulating these deformations. Bovine AF tissue was simultaneously shear loaded and imaged using confocal microscopy following either a buffer or elastase treatment. Digital image analysis was used to track through time local shear strains in specimens sheared transversely, and stretch and rotation of collagen fiber bundles in specimens sheared circumferentially. The results of this study suggest that sliding does not occur between AF plies under shear, and that interlamellar connections are governed by collagen and fibrilin rather than elastin. The transverse shear modulus was found to be approximately 1.6 times as high in plies the direction of the collagen fibers as in plies across them. Under physiological levels of in-plane shear, fiber bundles stretched and re-oriented linearly. Elastin was found to primarily stiffen plies transversely. We conclude that alterations in the elastic fiber network, as found with IVD herniation and degeneration, can therefore be expected to significantly influence the AF response to shear making it more susceptible to micro failure under bending or torsion loading.

Original languageEnglish
Pages (from-to)2279-2285
Number of pages7
JournalJournal of Biomechanics
Volume42
Issue number14
DOIs
StatePublished - 16 Oct 2009
Externally publishedYes

Keywords

  • Confocal
  • Disc
  • Intervertebral
  • Shear

Fingerprint

Dive into the research topics of 'Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content'. Together they form a unique fingerprint.

Cite this