Abstract
Patients with myotonic dystrophy type I (DM1) demonstrate visuospatial dysfunction and impaired performance in tasks requiring recognition or memory of figures and objects. In DM1, CUG expansion RNAs inactivate the muscleblind-like (MBNL) proteins. We show that constitutive Mbnl2 inactivation in Mbnl2ΔE2/ΔE2 mice selectively impairs object recognition memory in the novel object recognition test. When exploring the context of a novel arena in which the objects are later encountered, the Mbnl2ΔE2/ΔE2 dorsal hippocampus responds with a lack of enrichment for learning and memory-related pathways, mounting instead transcriptome alterations predicted to impair growth and neuron viability. In Mbnl2ΔE2/ΔE2 mice, saturation effects may prevent deployment of a functionally relevant transcriptome response during novel context exploration. Post-novel context exploration alterations in genes implicated in tauopathy and dementia are observed in the Mbnl2ΔE2/ΔE2 dorsal hippocampus. Thus, MBNL2 inactivation in patients with DM1 may alter novel context processing in the dorsal hippocampus and impair object recognition memory.
Original language | English |
---|---|
Article number | 106732 |
Journal | iScience |
Volume | 26 |
Issue number | 5 |
DOIs | |
State | Published - 19 May 2023 |
Externally published | Yes |
Keywords
- Biological sciences
- Molecular biology
- Molecular mechanism of gene regulation
- Neuroscience
- Transcriptomics