Mass spectrometry of the M. smegmatis proteome: Protein expression levels correlate with function, operons, and codon bias

Rong Wang, John T. Prince, Edward M. Marcotte

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

The fast-growing bacterium Mycobacterium smegmatis is a model mycobacterial system, a nonpathogenic soil bacterium that nonetheless shares many features with the pathogenic Mycobacterium tuberculosis, the causative agent of tuberculosis. The study of M. smegmatis is expected to shed light on mechanisms of mycobacterial growth and complex lipid metabolism, and provides a tractable system for antimycobacterial drug development. Although the M. smegmatis genome sequence is not yet completed, we used multidimensional chromatography and tandem mass spectrometry, in combination with the partially completed genome sequence, to detect and identify a total of 901 distinct proteins from M. smegmatis over the course of 25 growth conditions, providing experimental annotation for many predicted genes with an ∼5% false-positive identification rate. We observed numerous proteins involved in energy production (9.8% of expressed proteins), protein translation (8.7%), and lipid biosynthesis (5.4%); 33% of the 901 proteins are of unknown function. Protein expression levels were estimated from the number of observations of each protein, allowing measurement of differential expression of complete operons, and the comparison of the stationary and exponential phase proteomes. Expression levels are correlated with proteins' codon biases and mRNA expression levels, as measured by comparison with codon adaptation indices, principle component analysis of codon frequencies, and DNA microarray data. This observation is consistent with notions that either (1) prokaryotic protein expression levels are largely preset by codon choice, or (2) codon choice is optimized for consistency with average expression levels regardless of the mechanism of regulating expression.

Original languageEnglish
Pages (from-to)1118-1126
Number of pages9
JournalGenome Research
Volume15
Issue number8
DOIs
StatePublished - Aug 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Mass spectrometry of the M. smegmatis proteome: Protein expression levels correlate with function, operons, and codon bias'. Together they form a unique fingerprint.

Cite this