TY - JOUR
T1 - Mapping anorexia nervosa genes to clinical phenotypes
AU - Johnson, Jessica S.
AU - Cote, Alanna C.
AU - Dobbyn, Amanda
AU - Sloofman, Laura G.
AU - Xu, Jiayi
AU - Cotter, Liam
AU - Charney, Alexander W.
AU - Birgegård, Andreas
AU - Jordan, Jennifer
AU - Kennedy, Martin
AU - Landén, Mikaél
AU - Maguire, Sarah L.
AU - Martin, Nicholas G.
AU - Mortensen, Preben Bo
AU - Thornton, Laura M.
AU - Bulik, Cynthia M.
AU - Huckins, Laura M.
N1 - Funding Information:
JJ and LMH were supported by funding from the Klarman Family Foundation (2019 Eating Disorders Research Grants Program) and the NIMH (R01MH118278). CMB is supported by NIMH (R01MH120170; R01MH124871; R01MH119084; R01MH118278; and R01MH124871); Brain and Behavior Research Foundation Distinguished Investigator Grant; Swedish Research Council (Vetenskapsrådet, award: 538-2013-8864); Lundbeck Foundation (Grant no. R276-2018-4581). This study was supported in part through the resources and staff expertise provided by the Charles Bronfman Institute for Personalized Medicine and The BioMe Biobank Program at the Icahn School of Medicine at Mount Sinai. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award numbers S10OD018522 and S10OD026880. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. TM
Funding Information:
CMB reports: Shire (grant recipient, Scientific Advisory Board member); Idorsia (consultant); Pearson (author, royalty recipient); Equip Health Inc. (clinical advisory board). ML declares that over the past 36 months, he has received lecture honoraria from Lundbeck Pharmaceutical (no other equity ownership, profit-sharing agreements, royalties, or patent). The remaining authors declare no competing interests.
Publisher Copyright:
Copyright © The Author(s), 2022. Published by Cambridge University Press.
PY - 2023/4/5
Y1 - 2023/4/5
N2 - Background Anorexia nervosa (AN) is a psychiatric disorder with complex etiology, with a significant portion of disease risk imparted by genetics. Traditional genome-wide association studies (GWAS) produce principal evidence for the association of genetic variants with disease. Transcriptomic imputation (TI) allows for the translation of those variants into regulatory mechanisms, which can then be used to assess the functional outcome of genetically regulated gene expression (GReX) in a broader setting through the use of phenome-wide association studies (pheWASs) in large and diverse clinical biobank populations with electronic health record phenotypes. Methods Here, we applied TI using S-PrediXcan to translate the most recent PGC-ED AN GWAS findings into AN-GReX. For significant genes, we imputed AN-GReX in the Mount Sinai BioMe™ Biobank and performed pheWASs on over 2000 outcomes to test the clinical consequences of aberrant expression of these genes. We performed a secondary analysis to assess the impact of body mass index (BMI) and sex on AN-GReX clinical associations. Results Our S-PrediXcan analysis identified 53 genes associated with AN, including what is, to our knowledge, the first-genetic association of AN with the major histocompatibility complex. AN-GReX was associated with autoimmune, metabolic, and gastrointestinal diagnoses in our biobank cohort, as well as measures of cholesterol, medications, substance use, and pain. Additionally, our analyses showed moderation of AN-GReX associations with measures of cholesterol and substance use by BMI, and moderation of AN-GReX associations with celiac disease by sex. Conclusions Our BMI-stratified results provide potential avenues of functional mechanism for AN-genes to investigate further.
AB - Background Anorexia nervosa (AN) is a psychiatric disorder with complex etiology, with a significant portion of disease risk imparted by genetics. Traditional genome-wide association studies (GWAS) produce principal evidence for the association of genetic variants with disease. Transcriptomic imputation (TI) allows for the translation of those variants into regulatory mechanisms, which can then be used to assess the functional outcome of genetically regulated gene expression (GReX) in a broader setting through the use of phenome-wide association studies (pheWASs) in large and diverse clinical biobank populations with electronic health record phenotypes. Methods Here, we applied TI using S-PrediXcan to translate the most recent PGC-ED AN GWAS findings into AN-GReX. For significant genes, we imputed AN-GReX in the Mount Sinai BioMe™ Biobank and performed pheWASs on over 2000 outcomes to test the clinical consequences of aberrant expression of these genes. We performed a secondary analysis to assess the impact of body mass index (BMI) and sex on AN-GReX clinical associations. Results Our S-PrediXcan analysis identified 53 genes associated with AN, including what is, to our knowledge, the first-genetic association of AN with the major histocompatibility complex. AN-GReX was associated with autoimmune, metabolic, and gastrointestinal diagnoses in our biobank cohort, as well as measures of cholesterol, medications, substance use, and pain. Additionally, our analyses showed moderation of AN-GReX associations with measures of cholesterol and substance use by BMI, and moderation of AN-GReX associations with celiac disease by sex. Conclusions Our BMI-stratified results provide potential avenues of functional mechanism for AN-genes to investigate further.
KW - Anorexia nervosa
KW - EHR
KW - PrediXcan
KW - pheWAS
KW - transcriptomic imputation
UR - http://www.scopus.com/inward/record.url?scp=85128406545&partnerID=8YFLogxK
U2 - 10.1017/S0033291721004554
DO - 10.1017/S0033291721004554
M3 - Article
AN - SCOPUS:85128406545
SN - 0033-2917
VL - 53
SP - 2619
EP - 2633
JO - Psychological Medicine
JF - Psychological Medicine
IS - 6
ER -