TY - JOUR
T1 - Magnetic resonance elastography (MRE) shows significant reduction of thigh muscle stiffness in healthy older adults
AU - Kennedy, Paul
AU - Barnhill, Eric
AU - Gray, Calum
AU - Brown, Colin
AU - van Beek, Edwin J.R.
AU - Roberts, Neil
AU - Greig, Carolyn Anne
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Determining the effect of ageing on thigh muscle stiffness using magnetic resonance elastography (MRE) and investigate whether fat fraction and muscle cross-sectional area (CSA) are related to stiffness. Six healthy older adults in their eighth and ninth decade and eight healthy young men were recruited and underwent a 3 T MRI protocol including MRE and Dixon fat fraction imaging. Muscle stiffness, fat fraction and muscle CSA were calculated in ROIs corresponding to the four quadriceps muscles (i.e. vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), rectus femoris (RF)), combined quadriceps, combined hamstrings and adductors and whole thigh. Muscle stiffness was significantly reduced (p < 0.05) in the older group in all measured ROIs except the VI (p = 0.573) and RF (p = 0.081). Similarly, mean fat fraction was significantly increased (p < 0.05) in the older group over all ROIs with the exception of the VI (p = 0.059) and VL muscle groups (p = 0.142). Muscle CSA was significantly reduced in older participants in the VM (p = 0.003) and the combined quadriceps (p = 0.001), hamstrings and adductors (p = 0.008) and whole thigh (p = 0.003). Over the whole thigh, stiffness was significantly negatively correlated with fat fraction (r = − 0.560, p = 0.037) and positively correlated with CSA (r = 0.749, p = 0.002). Stepwise regression analysis revealed that age was the most significant predictor of muscle stiffness (p = 0.001). These results suggest that muscle stiffness is significantly decreased in healthy older adults. Muscle fat fraction and muscle CSA are also significantly changed in older adults; however, age is the most significant predictor of muscle stiffness.
AB - Determining the effect of ageing on thigh muscle stiffness using magnetic resonance elastography (MRE) and investigate whether fat fraction and muscle cross-sectional area (CSA) are related to stiffness. Six healthy older adults in their eighth and ninth decade and eight healthy young men were recruited and underwent a 3 T MRI protocol including MRE and Dixon fat fraction imaging. Muscle stiffness, fat fraction and muscle CSA were calculated in ROIs corresponding to the four quadriceps muscles (i.e. vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), rectus femoris (RF)), combined quadriceps, combined hamstrings and adductors and whole thigh. Muscle stiffness was significantly reduced (p < 0.05) in the older group in all measured ROIs except the VI (p = 0.573) and RF (p = 0.081). Similarly, mean fat fraction was significantly increased (p < 0.05) in the older group over all ROIs with the exception of the VI (p = 0.059) and VL muscle groups (p = 0.142). Muscle CSA was significantly reduced in older participants in the VM (p = 0.003) and the combined quadriceps (p = 0.001), hamstrings and adductors (p = 0.008) and whole thigh (p = 0.003). Over the whole thigh, stiffness was significantly negatively correlated with fat fraction (r = − 0.560, p = 0.037) and positively correlated with CSA (r = 0.749, p = 0.002). Stepwise regression analysis revealed that age was the most significant predictor of muscle stiffness (p = 0.001). These results suggest that muscle stiffness is significantly decreased in healthy older adults. Muscle fat fraction and muscle CSA are also significantly changed in older adults; however, age is the most significant predictor of muscle stiffness.
KW - Ageing
KW - Elastography
KW - Muscle
KW - Stiffness
UR - http://www.scopus.com/inward/record.url?scp=85077086391&partnerID=8YFLogxK
U2 - 10.1007/s11357-019-00147-2
DO - 10.1007/s11357-019-00147-2
M3 - Article
C2 - 31865527
AN - SCOPUS:85077086391
SN - 2509-2715
VL - 42
SP - 311
EP - 321
JO - GeroScience
JF - GeroScience
IS - 1
ER -