Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers

Harini Veeraraghavan, Claire F. Friedman, Deborah F. DeLair, Josip Ninčević, Yuki Himoto, Silvio G. Bruni, Giovanni Cappello, Iva Petkovska, Stephanie Nougaret, Ines Nikolovski, Ahmet Zehir, Nadeem R. Abu-Rustum, Carol Aghajanian, Dmitriy Zamarin, Karen A. Cadoo, Luis A. Diaz, Mario M. Leitao, Vicky Makker, Robert A. Soslow, Jennifer J. MuellerBritta Weigelt, Yulia Lakhman

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

To evaluate whether radiomic features from contrast-enhanced computed tomography (CE-CT) can identify DNA mismatch repair deficient (MMR-D) and/or tumor mutational burden-high (TMB-H) endometrial cancers (ECs). Patients who underwent targeted massively parallel sequencing of primary ECs between 2014 and 2018 and preoperative CE-CT were included (n = 150). Molecular subtypes of EC were assigned using DNA polymerase epsilon (POLE) hotspot mutations and immunohistochemistry-based p53 and MMR protein expression. TMB was derived from sequencing, with > 15.5 mutations-per-megabase as a cut-point to define TMB-H tumors. After radiomic feature extraction and selection, radiomic features and clinical variables were processed with the recursive feature elimination random forest classifier. Classification models constructed using the training dataset (n = 105) were then validated on the holdout test dataset (n = 45). Integrated radiomic-clinical classification distinguished MMR-D from copy number (CN)-low-like and CN-high-like ECs with an area under the receiver operating characteristic curve (AUROC) of 0.78 (95% CI 0.58–0.91). The model further differentiated TMB-H from TMB-low (TMB-L) tumors with an AUROC of 0.87 (95% CI 0.73–0.95). Peritumoral-rim radiomic features were most relevant to both classifications (p ≤ 0.044). Radiomic analysis achieved moderate accuracy in identifying MMR-D and TMB-H ECs directly from CE-CT. Radiomics may provide an adjunct tool to molecular profiling, especially given its potential advantage in the setting of intratumor heterogeneity.

Original languageEnglish
Article number17769
JournalScientific Reports
Volume10
Issue number1
DOIs
StatePublished - 1 Dec 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers'. Together they form a unique fingerprint.

Cite this