Abstract
Developmental alterations of excitatory synapses areimplicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2+/- ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2+/ mice, but not in Atg7CKO neuronal autophagy-deficient mice or Tsc2+/-:Atg7CKO double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR.
Original language | English |
---|---|
Pages (from-to) | 1131-1143 |
Number of pages | 13 |
Journal | Neuron |
Volume | 83 |
Issue number | 5 |
DOIs | |
State | Published - 3 Sep 2014 |