TY - JOUR
T1 - Loss of hepatic aldolase B activates Akt and promotes hepatocellular carcinogenesis by destabilizing the Aldob/Akt/PP2A protein complex
AU - He, Xuxiao
AU - Li, Min
AU - Yu, Hongming
AU - Liu, Guijun
AU - Wang, Ningning
AU - Yin, Chunzhao
AU - Tu, Qiaochu
AU - Narla, Goutham
AU - Tao, Yongzhen
AU - Cheng, Shuqun
AU - Yin, Huiyong
N1 - Publisher Copyright:
© 2020 He et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/12/4
Y1 - 2020/12/4
N2 - Loss of hepatic fructose-1, 6-bisphosphate aldolase B (Aldob) leads to a paradoxical up-regulation of glucose metabolism to favor hepatocellular carcinogenesis (HCC), but the upstream signaling events remain poorly defined. Akt is highly activated in HCC, and targeting Akt is being explored as a potential therapy for HCC. Herein, we demonstrate that Aldob suppresses Akt activity and tumor growth through a protein complex containing Aldob, Akt, and protein phosphatase 2A (PP2A), leading to inhibition of cell viability, cell cycle progression, glucose uptake, and metabolism. Interestingly, Aldob directly interacts with phosphorylated Akt (p-Akt) and promotes the recruitment of PP2A to dephosphorylate p-Akt, and this scaffolding effect of Aldob is independent of its enzymatic activity. Loss of Aldob or disruption of Aldob/Akt interaction in Aldob R304A mutant restores Akt activity and tumor-promoting effects. Consistently, Aldob and p-Akt expression are inversely correlated in human HCC tissues, and Aldob down-regulation coupled with p-Akt up-regulation predicts a poor prognosis for HCC. We have further discovered that Akt inhibition or a specific small-molecule activator of PP2A (SMAP) efficiently attenuates HCC tumorigenesis in xenograft mouse models. Our work reveals a novel nonenzymatic role of Aldob in negative regulation of Akt activation, suggesting that directly inhibiting Akt activity or through reactivating PP2A may be a potential therapeutic approach for HCC treatment.
AB - Loss of hepatic fructose-1, 6-bisphosphate aldolase B (Aldob) leads to a paradoxical up-regulation of glucose metabolism to favor hepatocellular carcinogenesis (HCC), but the upstream signaling events remain poorly defined. Akt is highly activated in HCC, and targeting Akt is being explored as a potential therapy for HCC. Herein, we demonstrate that Aldob suppresses Akt activity and tumor growth through a protein complex containing Aldob, Akt, and protein phosphatase 2A (PP2A), leading to inhibition of cell viability, cell cycle progression, glucose uptake, and metabolism. Interestingly, Aldob directly interacts with phosphorylated Akt (p-Akt) and promotes the recruitment of PP2A to dephosphorylate p-Akt, and this scaffolding effect of Aldob is independent of its enzymatic activity. Loss of Aldob or disruption of Aldob/Akt interaction in Aldob R304A mutant restores Akt activity and tumor-promoting effects. Consistently, Aldob and p-Akt expression are inversely correlated in human HCC tissues, and Aldob down-regulation coupled with p-Akt up-regulation predicts a poor prognosis for HCC. We have further discovered that Akt inhibition or a specific small-molecule activator of PP2A (SMAP) efficiently attenuates HCC tumorigenesis in xenograft mouse models. Our work reveals a novel nonenzymatic role of Aldob in negative regulation of Akt activation, suggesting that directly inhibiting Akt activity or through reactivating PP2A may be a potential therapeutic approach for HCC treatment.
UR - http://www.scopus.com/inward/record.url?scp=85097320038&partnerID=8YFLogxK
U2 - 10.1371/journal.pbio.3000803
DO - 10.1371/journal.pbio.3000803
M3 - Article
C2 - 33275593
AN - SCOPUS:85097320038
SN - 1544-9173
VL - 18
JO - PLoS Biology
JF - PLoS Biology
IS - 12
M1 - e3000803
ER -