TY - JOUR
T1 - Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice
AU - Wang, Jiapeng
AU - Li, Zhaomin
AU - He, Yongzheng
AU - Pan, Feng
AU - Chen, Shi
AU - Rhodes, Steven
AU - Nguyen, Lihn
AU - Yuan, Jin
AU - Jiang, Li
AU - Yang, Xianlin
AU - Weeks, Ophelia
AU - Liu, Ziyue
AU - Zhou, Jiehao
AU - Ni, Hongyu
AU - Cai, Chen Leng
AU - Xu, Mingjiang
AU - Yang, Feng Chun
PY - 2014/1/23
Y1 - 2014/1/23
N2 - ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80%embryonic lethality. Surviving Asxl1-/- mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1-/- mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1-/- HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1+/-mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis andmitosis in Lineage-c-Kit+ (Lin-c-Kit+) cells, consistent with humanMDS. Furthermore, Asxl1-/- Lin -c-Kit+ cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl-/- mice.
AB - ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80%embryonic lethality. Surviving Asxl1-/- mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1-/- mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1-/- HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1+/-mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis andmitosis in Lineage-c-Kit+ (Lin-c-Kit+) cells, consistent with humanMDS. Furthermore, Asxl1-/- Lin -c-Kit+ cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl-/- mice.
UR - http://www.scopus.com/inward/record.url?scp=84897019526&partnerID=8YFLogxK
U2 - 10.1182/blood-2013-05-500272
DO - 10.1182/blood-2013-05-500272
M3 - Article
C2 - 24255920
AN - SCOPUS:84897019526
SN - 0006-4971
VL - 123
SP - 541
EP - 553
JO - Blood
JF - Blood
IS - 4
ER -