TY - JOUR
T1 - Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia
AU - Chorzalska, Anna
AU - Kim, Javier Flores
AU - Roder, Karim
AU - Tepper, Alexander
AU - Ahsan, Nagib
AU - Rao, R. Shyama Prasad
AU - Olszewski, Adam J.
AU - Yu, Xiaoqing
AU - Terentyev, Dmitry
AU - Morgan, John
AU - Treaba, DIana O.
AU - Zhao, Ting C.
AU - Liang, Olin
AU - Gruppuso, Philip A.
AU - Dubielecka, Patrycja M.
N1 - Publisher Copyright:
© 2017, Mary Ann Liebert, Inc.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Despite the success of tyrosine kinase inhibitor (TKI) therapy in chronic myelogenous leukemia (CML), leukemic stem/progenitor cells remain detectable even in the state of deep molecular remission. Mechanisms that allow them to persist despite continued kinase inhibition remain unclear. We have previously shown that prolonged exposure to imatinib mesylate (IM) results in dysregulation of Akt/Erk 1/2 signaling, upregulation of miR-181a, enhanced adhesiveness, and resistance to high IM. To characterize the molecular basis and reversibility of those effects, we applied gene and protein expression analysis, quantitative phosphoproteomics, and direct miR-181a inhibition to our cellular model of CML cells subjected to prolonged exposure to IM. Those cells demonstrated upregulation of pluripotency markers (SOX2, SALL4) and adhesion receptors (CD44, VLA-4, CXCR4), as well as downregulation of Hippo signaling and upregulation of transcription coactivator YAP. Furthermore, inhibition of miR-181a using a microRNA sponge inhibitor resulted in decreased transcription of SOX2 and SALL4, decreased activation of YAP, and increased sensitivity to IM. Our findings indicate that long-term exposure to IM results in dysregulation of stem cell renewal-regulatory Hippo/YAP signaling, acquisition of expression of stem cell markers and that experimental interference with YAP activity may help to restore chemosensitivity to TKI.
AB - Despite the success of tyrosine kinase inhibitor (TKI) therapy in chronic myelogenous leukemia (CML), leukemic stem/progenitor cells remain detectable even in the state of deep molecular remission. Mechanisms that allow them to persist despite continued kinase inhibition remain unclear. We have previously shown that prolonged exposure to imatinib mesylate (IM) results in dysregulation of Akt/Erk 1/2 signaling, upregulation of miR-181a, enhanced adhesiveness, and resistance to high IM. To characterize the molecular basis and reversibility of those effects, we applied gene and protein expression analysis, quantitative phosphoproteomics, and direct miR-181a inhibition to our cellular model of CML cells subjected to prolonged exposure to IM. Those cells demonstrated upregulation of pluripotency markers (SOX2, SALL4) and adhesion receptors (CD44, VLA-4, CXCR4), as well as downregulation of Hippo signaling and upregulation of transcription coactivator YAP. Furthermore, inhibition of miR-181a using a microRNA sponge inhibitor resulted in decreased transcription of SOX2 and SALL4, decreased activation of YAP, and increased sensitivity to IM. Our findings indicate that long-term exposure to IM results in dysregulation of stem cell renewal-regulatory Hippo/YAP signaling, acquisition of expression of stem cell markers and that experimental interference with YAP activity may help to restore chemosensitivity to TKI.
KW - Chemoresistance
KW - Hippo pathway
KW - Imatinib mesylate
KW - Leukemic stem cells
KW - Tyrosine kinase inhibitor
KW - YAP
UR - https://www.scopus.com/pages/publications/85018339451
U2 - 10.1089/scd.2016.0262
DO - 10.1089/scd.2016.0262
M3 - Article
C2 - 28103766
AN - SCOPUS:85018339451
SN - 1547-3287
VL - 26
SP - 656
EP - 677
JO - Stem Cells and Development
JF - Stem Cells and Development
IS - 9
ER -