TY - JOUR
T1 - Long-Lasting Effect of Perinatal Exposure to L-tryptophan on Circadian Clock of Primary Cell Lines Established from Male Offspring Born from Mothers Fed on Dietary Protein Restriction
AU - Nascimento, Elizabeth
AU - Guzman-Quevedo, Omar
AU - Delacourt, Nellie
AU - da Silva Aragão, Raquel
AU - Perez-Garcia, Georgina
AU - de Souza, Sandra Lopes
AU - Manhães-de-Castro, Raul
AU - Bolaños-Jiménez, Francisco
AU - Kaeffer, Bertrand
PY - 2013/2/27
Y1 - 2013/2/27
N2 - Background & Aims: Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation. Methods: Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45-55 days) and adult (110-130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin. Results: Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p = 0.0291) and adult (p = 0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p = 0.049), daily bolus (p<0.0001) and synchronizer hours (p = 0.0002). All factors were significantly interacting (p = 0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase. Conclusions: Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines.
AB - Background & Aims: Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation. Methods: Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45-55 days) and adult (110-130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin. Results: Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p = 0.0291) and adult (p = 0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p = 0.049), daily bolus (p<0.0001) and synchronizer hours (p = 0.0002). All factors were significantly interacting (p = 0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase. Conclusions: Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines.
UR - http://www.scopus.com/inward/record.url?scp=84874543372&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0056231
DO - 10.1371/journal.pone.0056231
M3 - Article
C2 - 23460795
AN - SCOPUS:84874543372
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 2
M1 - e56231
ER -