Location of Myc, Igh, and Igk on Robertsonian fusion chromosomes is inconsequential for Myc translocations and plasmacytoma development in mice, but Rb(6.15)-carrying tumors prefer Igk-Myc inversions over translocations

Santiago Silva, Francis Wiener, George Klein, Siegfried Janz

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The location of the Myc and immunoglobulin (Ig) loci on metacentric Robertsonian (Rb) fusion chromosomes may affect the development of mouse plasmacytomas (Pcts) by changing the probability with which chromosomal Myc-Ig translocations occur. To test this hypothesis, we induced Pcts in BALB/c (C) mice that carried Rb(4.12) and/or Rb(6.15) chromosomes. The Rb mice developed Pcts (n = 198) with similar onset and incidence to that in the inbred C mice. Karyotyping of 70 Rb-carrying Pcts demonstrated that in these tumors, just as in their counterparts in inbred C mice, the Igh heavy-chain locus was translocated with Myc more often than was the Igk light-chain locus. Pcts harboring Igh or Igk on normal and Rb chromosomes showed no bias toward either in generating Myc translocations. These findings indicated that the location of Myc, Igh, and Igk on normal or Rb chromosomes is inconsequential for Myc translocation and Pct development. In contrast, in Rb(6.15) mice, in which chromosomal inversions competed with chromosomal translocations for Igk-Myc juxtapositions, the former occurred more frequently than the latter in the resulting Pcts. This suggested that spatial proximity of Igk and Myc on the same chromosome facilitates the rearrangement of these loci. Myc translocation-dependent mouse Pct may provide a good model system for furthering our understanding of the relationship of higher-order genome organization in the interphase nucleus, origin of chromosomal translocations, and development of cancer.

Original languageEnglish
Pages (from-to)416-426
Number of pages11
JournalGenes Chromosomes and Cancer
Volume42
Issue number4
DOIs
StatePublished - Apr 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Location of Myc, Igh, and Igk on Robertsonian fusion chromosomes is inconsequential for Myc translocations and plasmacytoma development in mice, but Rb(6.15)-carrying tumors prefer Igk-Myc inversions over translocations'. Together they form a unique fingerprint.

Cite this