TY - JOUR
T1 - Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism
AU - Fan, Yong
AU - Menon, Ram K.
AU - Cohen, Pinchas
AU - Hwang, David
AU - Clemens, Thomas
AU - DiGirolamo, Douglas J.
AU - Kopchick, John J.
AU - Le Roith, Derek
AU - Trucco, Massimo
AU - Sperling, Mark A.
PY - 2009/7/24
Y1 - 2009/7/24
N2 - Growth hormone (GH) plays a pivotal role in growth and metabolism, with growth promotion mostly attributed to generation of insulin-like growth factor I (IGF-I) in liver or at local sites of GH action, whereas the metabolic effects of GH are considered to be intrinsic to GH itself. To distinguish the effects of GH from those of IGF-I, we developed a Cre-lox-mediated model of tissue-specific deletion of the growth hormone receptor (GHR). Near total deletion of the GHR in liver (GHRLD) had no effect on total body or bone linear growth despite a >90% suppression of circulating IGF-I; however, total bone density was significantly reduced. Circulating GH was increased 4-fold, and GHRLD displayed insulin resistance, glucose intolerance, and increased circulating free fatty acids. Livers displayed marked steatosis, the result of increased triglyceride synthesis and decreased efflux; reconstitution of hepatic GHR signaling via adenoviral expression of GHR restored triglyceride output to normal, whereas IGF-I infusion did not correct steatosis despite restoration of circulating GH to normal. Thus, with near total absence of circulating IGF-I, GH action at the growth plate, directly and via locally generated IGF-I, can regulate bone growth, but at the expense of diabetogenic, lipolytic, and hepatosteatotic consequences. Our results indicate that IGF-I is essential for bone mineral density, whereas hepatic GH signaling is essential to regulate intrahepatic lipid metabolism. We propose that circulating IGF-I serves to amplify the growth-promoting effects of GH, while simultaneously dampening the catabolic effects of GH.
AB - Growth hormone (GH) plays a pivotal role in growth and metabolism, with growth promotion mostly attributed to generation of insulin-like growth factor I (IGF-I) in liver or at local sites of GH action, whereas the metabolic effects of GH are considered to be intrinsic to GH itself. To distinguish the effects of GH from those of IGF-I, we developed a Cre-lox-mediated model of tissue-specific deletion of the growth hormone receptor (GHR). Near total deletion of the GHR in liver (GHRLD) had no effect on total body or bone linear growth despite a >90% suppression of circulating IGF-I; however, total bone density was significantly reduced. Circulating GH was increased 4-fold, and GHRLD displayed insulin resistance, glucose intolerance, and increased circulating free fatty acids. Livers displayed marked steatosis, the result of increased triglyceride synthesis and decreased efflux; reconstitution of hepatic GHR signaling via adenoviral expression of GHR restored triglyceride output to normal, whereas IGF-I infusion did not correct steatosis despite restoration of circulating GH to normal. Thus, with near total absence of circulating IGF-I, GH action at the growth plate, directly and via locally generated IGF-I, can regulate bone growth, but at the expense of diabetogenic, lipolytic, and hepatosteatotic consequences. Our results indicate that IGF-I is essential for bone mineral density, whereas hepatic GH signaling is essential to regulate intrahepatic lipid metabolism. We propose that circulating IGF-I serves to amplify the growth-promoting effects of GH, while simultaneously dampening the catabolic effects of GH.
UR - http://www.scopus.com/inward/record.url?scp=67749111843&partnerID=8YFLogxK
U2 - 10.1074/jbc.M109.014308
DO - 10.1074/jbc.M109.014308
M3 - Article
C2 - 19460757
AN - SCOPUS:67749111843
SN - 0021-9258
VL - 284
SP - 19937
EP - 19944
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 30
ER -